﻿ 深水爆炸载荷及对潜艇结构毁伤研究进展
 舰船科学技术  2021, Vol. 43 Issue (12): 9-15    DOI: 10.3404/j.issn.1672-7649.2021.12.002 PDF

Research progress in deep-water explosion loads and its damage to submarine structures
CHEN Yan-wu, SUN Yuan-xiang, WANG Cheng
State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract: Research on deep-water explosion loads and damage to submarine structures can provide necessary support for the efficient damage of anti-submarine weapons and the safety of submarine structures. Researchers have made great progress in underwater explosion for decades, but the results are based on shallow water models mostly. There are still many problems in the field of deep-water explosion that need to be solved. In this paper, the developments in this field are reviewed from the aspects of experimental research and numerical simulation. The research status of deep-water explosion experimental and numerical simulation technology are reported, the law of the influence of water depth on underwater explosion shock wave, bubble load characteristics and submarine structure damage characteristics are summarized. The issues need to be studied in this field are predicted.
Key words: deep-water explosion     load characteristics     structure damage     experimental research     numerical simulation
0 引　言

1 实验研究现状 1.1 深水爆炸实验技术

1.2 深水爆炸载荷特性实验

Cole[5]对1948年以前的研究进行总结，给出了TNT炸药气泡最大半径Rm和一次气泡脉动周期随水深H的变化关系，如式(1)和式(2)所示，实验水深范围为91～183 m。Arons等[13]使用TNT进行了76.2 m和152.4 m的深水爆炸实验，发现K取2.11与实验结果吻合较好，进一步验证了式(2)的有效性。

 ${R}_{m}=3.55{\left(\frac{W}{H+10.3}\right)}^{1/3} \text{，}$ (1)
 ${T}_{b}=K\frac{{W}^{1/3}}{(H+10.3{)}^{5/6}} \text{。}$ (2)

 ${T}_{b}=K{\left(W/L\right)}^{1/2}{\left(H+10\right)}^{\alpha } \text{。}$ (3)

 ${T}_{b}=2.046\frac{{W}^{1/3}}{(H+10{)}^{0.83}} \text{，}$ (4)
 ${R}_{m}=3.697\frac{{W}^{1/3}}{(H+10{)}^{0.364}} \text{。}$ (5)

1.3 深水爆炸载荷对结构毁伤实验

2 数值模拟研究现状

2.1 数值模拟软件及数值算法

ALE算法将结构和流体区分，在两者的界面上进行耦合。该方法集中Lagrange-Euler算法的优势，将Lagrange算法的思想应用于结构的边界上，可以对其运动进行跟踪处理；在内部的网格划分上，该方法在继承Euler算法优势的基础上，又对其做出相应的改进，将物质实体与网格单元独立处理，但网格的位置可以在计算时进行调整，所以网格不会存在严重畸变现象。该算法集与各种大型商业软件，可以用于模拟水下爆炸冲击波的传播、气泡的脉动和结构的动态响应过程[27]

SPH算法将流场和结构离散成携带物质属性的粒子，通过支持域内粒子的近似，使粒子按照守恒定律运动。相对于有限元法和有限差分等传统算法，该方法在处理高应变率、网格畸变、网格滑移和多相物质交界面等极端问题时优势明显，可为水下爆炸气泡的数值模拟带来新的进展。目前，Ls-dyna和Autodyn等商业软件均集成了SPH算法，可进行水下爆炸冲击波和气泡脉动载荷的计算。但使用该方法计算量大，在边界近似、模拟三维冲击问题和处理非连续问题时存在缺陷[28]

BEM通过交界面来区分流体和气体，不考虑交界面内部的流场，计算效率非常高。处理边界条件对称的气泡时，可采用轴对称模型加快计算速度。处理边界条件不对称的气泡时，可采用线性平均逼近、二次多项式进行插值、径向基函数插值、九节点拉格朗日局部内插值等方式，对BEM离散的气泡表面节点的速度势与法向速度求解[29]。处理气泡与超近壁面、自由面相互作用及气泡破碎的后几个周期时，会出现网格畸变导致计算终止，Wang等[30]对BEM进行改进，首次计算了超近自由面的气泡与自由面耦合作用，使BEM不断完善。然而BEM的商业化程度较低，在处理问题时，需要专门编制程序进行计算，使工作量大大增加。

2.2 流场静水压力及结构预应力的施加

2.3 数值模拟在深水爆炸中的实际应用

3 总结与展望 3.1 总结

1）国内学者主要使用加压容器进行深水实验，但实验结果受到容器壁面边界效应和上部气腔的影响。边界效应导致气泡脉动周期变长，且装药量越大时影响越大；而气腔的存在导致气泡脉动周期变短，且装药量越大或气腔压力越小时影响越大。

2）水深对气泡载荷有一定影响，随着水深的增加，一次气泡脉动周期、气泡最大半径和气泡脉动压力比冲量均减小，而气泡射流载荷更大。水深对冲击波载荷的影响较小，可以忽略不计。

3）静水压力的增加降低了结构的固有振动频率，但不影响结构振型。圆柱壳结构的最大塑性应变值和有效应力峰值随水深的增加而线性增加，但壳体的最大应力和有效应力的分布趋势变化不大。

4）深水条件下，动静载荷的联合效应更加明显，结构发生屈曲的阈值减小，导致结构更容易在爆炸载荷的扰动下发生屈曲和撕裂破坏。深水中由于静水压力大，结构表面的局部空化不易发生。

5）使用数值模拟软件模拟深水爆炸时，Ls-dyna和Abaqus是较好的选择。Ls-dyna中的*DEFINE_CURVE关键字可以较好的实现不同深度的静水压力梯度。Abaqus中Abaqus/Standard和Abaqus/Explicit分析模块的联合使用可以较好实现结构预应力的施加。

3.2 展望

1）深水压力罐实验技术

2）射流载荷测量技术

3）完善的数值计算方法

 [1] 傅金祝. 反潜潜艇对水下爆炸的响应[J]. 水雷战与舰船防护. 2007, 15(2): 65−71. FU Jin-Zhu. Underwater explosion response of an SSK[J]. Mine Warfare & Ship Self-Defence. 2007, 15(2): 65−71. [2] 张阿漫, 王诗平, 彭玉祥, 等. 水下爆炸与舰船毁伤研究进展[J]. 中国舰船研究. 2019, 14(3): 1−13. ZHANG A-Man, WANG Shi-Ping, PENG Yu-Xiang, et al. Research progress in underwater explosion and its damage to ship structures[J]. Chinese Journal of Ship Research. 2019, 14(3): 1−13. [3] 梁浩哲, 杨莉, 张庆明. 深水条件下TNT炸药的爆炸特性[J]. 兵工学报. 2016, 37(S2): 241-−45. LIANG Hao-Zhe, YANG Li, ZHANG Qing-Ming. The explosive characteristics of TNT under deep water[J]. Acta Armamentarii. 2016, 37(S2): 241−245. [4] 贾宪振, 胡毅亭, 董明荣, 等. 深水环境中水下爆炸冲击波作用下圆柱壳动态响应的数值模拟研究[J]. 振动与冲击. 2008, 27(5): 160−165. JIA Xian-Zhen, HU Yi-Ting, DONG Ming-Rong, et al. Dynamic response of cylindrical shell subjected to underwater explosion shock waves in deep water[J]. Journal of Vibration and Shock. 2008, 27(5): 160−165. [5] COLE R-H. Underwater Explosion[M]. New Jersey: Princeton University Press, 1948. [6] 马坤, 初哲, 王可慧, 等. 小当量炸药深水爆炸气泡脉动模拟实验[J]. 爆炸与冲击. 2015, 35(3): 320−325. MA Kun, CHU Zhe, WANG Ke-Hui, et al. Experimental research on bubble pulse of small scale charge exploded under simulated deep water[J]. Explosion and Shock Waves. 2015, 35(3): 320−325. [7] 钟帅. 模拟深水爆炸装药输出能量的研究[D]. 合肥: 安徽理工大学, 2007. [8] 张洪, 吴红波, 夏曼曼, 等. 水下爆炸边界效应的研究进展[J]. 煤矿爆破. 2018(5): 1−5. [9] 伍俊, 庄铁栓, 闫鹏, 等. 水中爆炸实验装置结构设计与防护研究[J]. 振动与冲击. 2013, 32(11): 131−136. WU Ju, ZHUANG Tie-Shuan, YAN Peng, et al. Structural design of a test facility for underwater explosion and its protection measure to reduce shock wave[J]. Journal of Vibration and Shock. 2013, 32(11): 131−136. [10] 贾虎, 沈兆武. 空气隔层对水中冲击波的衰减特性[J]. 爆炸与冲击. 2012, 32(1): 61−66. JIA Hu, SHEN Zhao-Wu. An investigation into attenuation of underwater shockwave by air interlayer[J]. Explosion and Shock Waves. 2012, 32(1): 61−66. [11] 汪斌, 王彦平, 张远平. 有限水域气泡脉动实验方法研究[J]. 火炸药学报. 2008(3): 32−35. WANG Bin, WANG Yan-Ping, ZHANG Yuan-Ping. A method of studying bubble pulses in a confined water area[J]. Chinese Journal of Explosives & Propellants. 2008(3): 32−35. [12] 周章涛, 郝轶, 汪俊, 等. 深水爆炸压力筒试验技术研究[C]//船舶力学学术委员会测试技术学组2016年学术会议. 武汉: 2016: 12. [13] ARONS A-B, SLIFKO J-P, CARTER A. Secondary pressure pulses due to gas globe oscillation in underwater explosions. I. Experimental data[J]. The Journal of the Acoustical Society of America. 1948, 20(3): 271−276. [14] BLAIK M, CHRISTIAN E-A. Near‐surface measurements of deep explosions I. pressure pulses from small charges[J]. The Journal of the Acoustical Society of America. 1965, 38(1): 50−56. [15] COLLINS J-A, BRODA J-E, PURDY G-M, et al. Source signature measurements of underwater explosives at very high ambient pressures[J]. The Journal of the Acoustical Society of America. 1998, 103(6): 3281−3289. [16] WENTZELL R-A, ADLINGTON R-H, MOLDON J-C. Depth dependence of bubble pulse periods of point and end-fired line charges[J]. The Journal of the Acoustical Society of America. 1970, 48(5B): 1283−1286. [17] SLIFKO J-P. Pressure-pulse characteristic of deep water explosionsas functions of depth and range[R]. White Oak, MD: Naval Ordnance Lab, 1967. [18] BAUM F-A, SANASARYAN N-S. Effect of hydrostatic pressure on the parameters of an underwater explosion[J]. Combustion, Explosion, and Shock Waves. 1967, 1(4): 33−38. [19] FRIEDMAN B. Theory of underwater explosion bubbles[J]. Communications On Pure and Applied Mathematics. 1950, 3(2): 177−199. [20] LI Lin-Na, YOU Yue. Time-frequency energy analysis of deepwater explosion shock wave signals based on HHT[J]. MATEC Web of Conferences. 2021, 336: 1017. [21] 朱宽, 钟冬望, 何理, 等. 基于高速摄影技术模拟深水爆破环境下气泡脉动规律研究[J]. 工程爆破. 2015, 21(1): 5−9. ZHU Kuan, ZHONG Dong-Wang, HE Li, et al. Research on blasting bubble pulsation rules in simulated deepwater environment based on high-speed photography technology[J]. Engineering Blasting. 2015, 21(1): 5−9. [22] NAGAI T. On the results of damages of cylindrical shells due to underwater explosion[J]. Journal of Zosen Kiokai. 1966, 1966(119): 108-115. [23] GUPTA S, MATOS H, LEBLANC J-M, et al. Shock initiated instabilities in underwater cylindrical structures[J]. Journal of the Mechanics and Physics of Solids. 2016, 95: 188−212. [24] 刘硕刚, 侯海量, 朱锡, 等. 静水压力下环加筋圆柱壳振动特性试验研究[J]. 船海工程. 2009, 38(4): 97−101. [25] 梁浩哲, 张庆明, 龙仁荣, 等. 凸型加筋錐柱壳结构深水爆炸下的破坏模式[J]. 兵工学报. 2021: 1−10. LIANG Hao-Zhe, ZHANG Qing-Ming, LONG Ren-Rong, et al. Failure modes of ring-stiffened convex cone-cylinder at deep underwater explosion[J]. Acta Armamentarii. 2021: 1−10. [26] 王长利, 周刚, 冯娜, 等. 水深对毁伤效应的影响实验研究[J]. 中国测试. 2018, 44(10): 89−95. [27] BARRAS G, SOULI M, AQUELET N, et al. Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena[J]. Ocean Engineering. 2012, 41: 53−66. [28] 初文华, 明付仁, 张键. 三维SPH算法在冲击动力学中的应用[M]. 北京: 科学出版社, 2017. [29] HARRIS P-J. A numerical model for determining the motion of a bubble close to a fixed rigid structure in a fluid[J]. International Journal for Numerical Methods in Engineering. 2010, 33(9): 1813−1822. [30] WANG Q-X, YEO K-S, KHOO B-C, et al. Strong interaction between a buoyancy bubble and a free surface[J]. Theoretical & Computational Fluid Dynamics. 1996, 8(1): 73−88. [31] 袁建红, 朱锡, 张振华. 水下爆炸载荷作用下加筋圆柱壳结构弹塑性动力响应研究[J]. 振动与冲击. 2012, 31(24): 131−136. [32] 李建, 荣吉利, 项大林. 装药量及水深对水下爆炸气泡动态特性的影响[J]. 爆炸与冲击. 2010, 30(4): 342−348. LI Jian, RONG Ji-Li, XIANG Da-Lin. Effects of charge mass and water depth on dynamic behaviors of an underwater explosion bubble[J]. Explosion and Shock Waves. 2010, 30(4): 342−348. [33] 鲁忠宝, 南长江, 步相东, 等. 不同水深爆炸气泡运动特性仿真[J]. 鱼雷技术. 2009, 17(5): 15−18. [34] 孟龙, 黄瑞源, 王金相, 等. 小当量梯恩梯水下爆炸气泡脉动的数值模拟[J]. 兵工学报. 2020, 41(S1): 64−71. MENG Long, HUANG Rui-Yuan, WANG Jin-Xiang, et al. Numerical simulation of bubble pulsation of small-scaled TNT in underwater explosion[J]. Acta Armamentarii. 2020, 41(S1): 64−71. [35] 张阿漫, 姚熊亮. 水深和药量的变化对水下爆炸气泡射流的影响研究[J]. 工程力学. 2008(3): 222−229. ZHANG A-Man, YAO Xiong-Liang. The effect of charge and water depth on the underwater explosion bubble[J]. Engineering Mechanics. 2008(3): 222−229. [36] 盛振新, 刘荣忠, 郭锐. 壳体厚度和爆炸深度对水下爆炸冲击波的影响[J]. 火炸药学报. 2011, 34(3): 45−47. SHENG Zhen-Xin, LIU Rong-Zhong, GUO Rui. Effect of shell thickness and explosion depth on underwater explosive shock wave[J]. Chinese Journal of Explosives & Propellants. 2011, 34(3): 45−47. [37] 胡毅亭, 贾宪振, 饶国宁, 等. 水下爆炸冲击波和气泡脉动的数值模拟研究[J]. 舰船科学技术. 2009, 31(2): 134−140. HU Yi-Ting, JIA Xian-Zhen, RAO Guo-Ning, et al. Numerical study of underwater explosion shock wave and bubble pulse[J]. Ship Science and Technology. 2009, 31(2): 134−140. [38] 梁浩哲, 张庆明, 杨莉. 刚性壁面附近深水爆炸气泡射流特性数值模拟[J]. 兵工学报. 2017, 38(S1): 130−135. [39] LIU Liang-Tao, GAN Ning, WANG Jin-Xiang, et al. Study on bubble collapse near a solid wall under different hypergravity environments[J]. Ocean Engineering. 2021, 221: 108563. [40] 陈岗. 水下爆炸载荷及其作用下的结构响应数值研究[D]. 大连: 大连理工大学, 2013. [41] 程潇欧. 水下爆炸作用下开孔圆柱壳结构损伤特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. [42] 陈双. 圆柱壳舱段冲击环境特性及设备考核[D]. 哈尔滨: 哈尔滨工程大学, 2016. [43] 马会防, 谌勇, 华宏星, 等. 静水压对加筋圆柱壳受水下爆炸冲击载荷作用的影响[J]. 噪声与振动控制. 2007(3): 16−19. MA Hui-Fang, CHEN Yong, HUA Hong-Xing, et al. The influence of hydrostatic pressure on the effects of ring-stiffened cylindrical shells subjected to underwater explosion[J]. Noise and Vibration Control. 2007(3): 16−19.