﻿ 船舶水下辐射噪声水平指向性测量及试验研究
 舰船科学技术  2021, Vol. 43 Issue (11): 149-153    DOI: 10.3404/j.issn.1672-7649.2021.11.028 PDF

Research on horizontal directivity measuring method of ship underwater radiated nosie
WANG Wen-guan, HOU Peng, WU Di, LI Guang-yuan, Fan Ye-ming, WANG Ying
Dalian Scientific Test and Control Technology Institute, Dalian 116013, China
Abstract: The influence of ship underwater radiation noise on Marine living environment is becoming more and more prominent, and it is urgent to solve the problem of underwater noise pollution. Measuring the horizontal direction of the ship underwater radiation noise and finding and controlling the noise source is the effective technique to reduce the underwater noise pollution of ship. This paper presents a method of measuring ship underwater radiation noise horizontal directivity based on fixed measuring system, which has the characteristics of low frequency measuring ability, high measurement efficiency and long measuring window. The measurement results of two 754 Hz points source horizontal directionality of a meter apart is consistent with the theoretical calculation results, so the measurement method of ship underwater radiation noise horizontal directionality is feasible and accurate. By measuring the underwater radiation noise horizontal directionality of traffic boat, the low frequency noise source measured position is consistent with the known position, so the method has the practical feasibility of measuring the merchant ship.
Key words: underwater radiation noise     horizontal directionality     acoustic source test     ship test
0 引　言

1 水平指向性测量方法

 图 1 船舶水下辐射噪声水平指向性测量流程 Fig. 1 Ship underwater radiation noise horizontal directivity measurement process
1.1 测量单元绝对坐标测量

 图 2 测量单元大地绝对坐标测量原理 Fig. 2 Measuring principle of obtaining measurement unit geodetic absolute coordinate

 $\begin{split} & {x_d} = {x_g} \pm \frac{{{S^2} + {S_2}^2 - {S_1}^2}}{{2 \times S}}\text{，} \\ & {y_d} = {y_g} \pm \sqrt {{S_2}^2 - {D^2}} \times acos\left(\frac{{{S^2} + {S_2}^2 - {S_1}^2}}{{2 \times S \times \sqrt {{S_2}^2 - {D^2}} }}\right) \text{，}\\ & {z_d} = {z_g} - (H + D)\text{。} \end{split}$ (1)
1.2 机动路径规划

 图 3 船舶机动路径 Fig. 3 Ship maneuvering path
1.3 位置解算

 $\begin{split} & {x_z} = ({x_s} + \Delta x) \pm {x_d} \text{，} \\ & {y_z} = ({y_s} + \Delta y) \pm {y_d} \text{，} \\ & {z_z} = ({z_s} + \Delta z) - {z_d} \text{。} \end{split}$ (2)

 ${W_{ai}} = [\begin{array}{*{20}{c}} {{w_{{z_{i1}}}}}&{{w_{{z_{i2}}}}}&{\cdots}&{{w_{{z_{in}}}}} \end{array}] \text{，}$ (3)

 ${W_{\text{i}}}{\text{ = }}\left[ {\begin{array}{*{20}{c}} {{W_{{\text{a1}}}}} \\ {{W_{{\text{a2}}}}} \\ {{W_{{\text{a3}}}}} \end{array}} \right]{\text{ = }}\left[ {\begin{array}{*{20}{c}} {{w_{{z_{11}}}}}&{{w_{{z_{12}}}}}&{\cdots}&{{w_{{z_{1n}}}}} \\ {{w_{{z_{21}}}}}&{{w_{{z_{22}}}}}&{\cdots}&{{w_{{z_{2n}}}}} \\ {{w_{{z_{31}}}}}&{{w_{{z_{32}}}}}&{\cdots}&{{w_{{z_{3n}}}}} \end{array}} \right]\text{，}$ (4)

 $W{\text{ = }}\left[ {\begin{array}{*{20}{c}} {{W_1}}&{{W_2}}&{{W_3}}&{{W_4}}&{{W_5}}&{{W_6}}&{{W_7}}&{{W_8}} \end{array}} \right] \text{。}$ (5)
1.4 噪声数据处理

 $\begin{split}{\widetilde{P}}_{PER}(\omega )=&\frac{1}{L}{\displaystyle \sum _{i=1}^{L}{P}_{PER}^{i}(\omega )}=\\ &\frac{1}{MUL}{{\displaystyle \sum _{i=1}^{L}\left|{\displaystyle \sum _{n=0}^{M-1}{x}_{k}^{i}(n){d}_{2}（n）}{e}^{-j\omega n}\right|}}^{2}\text{。}\end{split}$ (6)

 ${L_{{x_k}}} = {L_P} = 10\lg \left(\frac{{{{\tilde{ P}}_{PER}}(\omega )}}{{{p_0}}}\right)\text{，}$ (7)

 ${y_j} = [\begin{array}{*{20}{c}} {{L_{{x_{j1}}}}}&{{L_{{x_{j2}}}}}&{\cdots}&{{L_{{x_{jn}}}}} \end{array}] \text{，}$ (8)

 ${Y_i} = \left[ {\begin{array}{*{20}{c}} {{y_1}} \\ {{y_2}} \\ {{y_3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{L_{{x_{11}}}}}&{{L_{{x_{12}}}}}&{\cdots}&{{L_{{x_{1n}}}}} \\ {{L_{{x_{21}}}}}&{{L_{{x_{22}}}}}&{\cdots}&{{L_{{x_{2n}}}}} \\ {{L_{{x_{31}}}}}&{{L_{{x_{32}}}}}&{\cdots}&{{L_{{x_{3n}}}}} \end{array}} \right] \text{，}$ (9)

 $Y{\text{ = }}\left[ {\begin{array}{*{20}{c}} {{Y_1}}&{{Y_2}}&{{Y_3}}&{{Y_4}}&{{Y_5}}&{{Y_6}}&{{Y_7}}&{{Y_8}} \end{array}} \right]\text{。}$ (10)
1.5 绘制水平指向性曲线

 $\left\{\begin{array}{l}{\nabla }^{4}\omega （W）={\displaystyle \sum _{i=1}^{N}{\alpha }_{j}\delta （W-{W}_{j}）}\text{，}\\ \omega （{W}_{j}）={Y}_{j}\text{。}\end{array}\right.$ (11)

 $\omega (W) = \sum\limits_{j = 1}^N {{\alpha _j}{\phi _m}(W - {W_j})} \text{，}$ (12)

 ${Y_i} = \sum\limits_{j = 1}^N {{\alpha _j}{\phi _m}({W_i} - {W_j})}\text{。}$ (13)

 $\left\{\begin{array}{l}r=\sqrt{{x}^{2}+{y}^{2}}\text{，}\\ \theta =\mathrm{arctan}\left(\dfrac{y}{x}\right)\text{。}\end{array}\right.$ (14)
2 声源验证试验

 图 4 相距1 m单频点源水平指向性理论计算结果 Fig. 4 Theoretical calculation results of two single-frequency points horizontal directionality of one meter apart

 图 5 相距1 m的754 Hz单频信号水平指向性图 Fig. 5 Measurement results of two 754 Hz points horizontal directionality of one meter apart

 图 6 声源800 Hz水平指向性出厂测试结果 Fig. 6 The factory test results of source 800 Hz horizontal directional
3 实船验证试验

 图 7 11 Hz轴频声场水平空间分布测量结果 Fig. 7 The measurement results of 11 Hz axial frequency acoustic field horizontal spatial distribution

 图 9 宽带声场水平空间分布测量结果 Fig. 9 The measurement results of broadband acoustic field horizontal spatial distribution

 图 8 55 Hz叶频声场水平空间分布测量结果 Fig. 8 The measurement results of 55 Hz blade frequency acoustic field horizontal spatial distribution

4 结　语

 [1] 李阳. 船舶水下辐射噪声立法渐行渐近[J]. 中国船检, 2014, 6: 39-40. [2] 王之程, 陈宗歧, 于沨, 等. 舰船噪声测量与分析[M]. 北京: 国防工业出版社, 2004. [3] 罗雪峰, 张明之. 一种基于线阵的舰船辐射噪声空间分布特性分析方法[J]. 舰船科学技术, 2009, 31(7): 82-84. DOI:10.3404/j.issn.1672-7649.2009.07.017 [4] 刘宁, 夏春艳, 刘文帅. 潜艇辐射噪声水平指向性测量方法[J]. 舰船科学技术, 2012, 34(3): 88-90. DOI:10.3404/j.issn.1672-7649.2012.03.019 [5] 刘伯胜, 雷家煜. 水声学原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2009. [6] 张强, 肖刚. 基于Welch法的功率谱估计算法仿真分析[C]//第六届民用飞机航电国际论坛论文集, 航空工业出版社, 2017. [7] 刘峰, 张严, 陈彦勇. 基于Biharmonic插值的海底地形可视化仿真[J]. 鱼雷技术, 2014, 22(1): 54-59. [8] 苏连成, 刘鑫等. 一种基于局部加权回归的润滑油磨粒在线分析算法[J]. 失效分析与预防, 2014, 9(1): 6-10. DOI:10.3969/j.issn.1673-6214.2014.01.002