﻿ 基于滑模控制的混合动力船舶控制策略
 舰船科学技术  2021, Vol. 43 Issue (11): 114-118    DOI: 10.3404/j.issn.1672-7649.2021.11.021 PDF

Research on control strategy of hybrid power ship based on sliding mode control
GAO Jian, ZHANG Gang
School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: In order to solve the increasingly serious problems of energy and pollution emissions, the power supply method of hybrid ships is proposed in nautical ships. Its essence is to control the ship’s motors, including the conversion between generators and batteries. This article will analyze and introduce the hybrid power system, and control the conversion stability between the two through the sliding mode control method to improve the stable connection operation of the battery, and perform simulation analysis through Matlab / Simulink, and compared with PI control. The results show that the adopted control strategy can better control the transition and control of the hybrid power system, as well as the adaptation of the load.
Key words: hybrid ship     hybrid power system     sliding mode control     PI control
0 引　言

1 蓄电池组混合动力模型

 图 1 混合动力系统并联结构图 Fig. 1 Parallel structure diagram of hybrid power system

 图 2 混合动力系统电力部分结构示意图 Fig. 2 Schematic diagram of the electric power part of the hybrid power system

2 混合动力系统建模

 $p = {p_1} + {p_2}\text{。}$ (1)

2.1 滑模控制器设计

 $e = p - {p^*}\text{。}$ (2)

2.2 RBF结构及理论

 图 3 神经网络控制结构简图 Fig. 3 Schematic diagram of neural network control structure

 $f = {W^*}^Th\left( x \right) + \varepsilon\text{，}$ (3)

 $\hat f\left( x \right) = {\hat W^{\rm{T}}}h\left( x \right) \text{，}$ (4)

 $f\left( x \right) - \hat f\left( x \right) = {W^{*{\rm{T}}}}h\left( x \right) + \varepsilon - {\hat W^{\rm{T}}}h\left( x \right) = {\tilde W^{\rm{T}}}h\left( x \right) + \varepsilon \text{。}$ (5)
2.3 滑模面及趋近律的设计

 $s = {k_1}e + {k_2}\int {e{\rm{d}}t} \text{，}$ (6)

 $\dot s = {k_1}\dot e + {k_2}e \text{，}$ (7)

 $\dot s = slaw \text{，}$ (8)

 ${D^\alpha }s = - \zeta {sgn} s \text{，}$ (9)

 $\dot s = {D^{1 - \alpha }}\left( { - \zeta {sgn} s} \right) \text{。}$ (10)

 $\begin{split} \dot {V} =& s\dot{ s} + \frac{1}{\gamma }{{\tilde {W}}^T}\dot {\hat {W}} = s\left( {k_1}\dot e + f\left( x \right) +\right. \\ &\left.{k_2}\left( {u - ui - {{{u^2}}/r} - {p^*}} \right) \right) + \frac{1}{\gamma }{{\tilde {W}}^T}\dot{ \hat {W} } \end{split} \text{，}$ (11)

 $u = - \frac{{{k_1}}}{{{k_2}}}\dot e - \frac{1}{{{k_2}}}\hat f\left( x \right) + \frac{{ui + {{{u^2}} \mathord{\left/ {\vphantom {{{u^2}} r}} \right. } r}}}{{{k_2}}} + \frac{1}{{{k_2}}}{p^*} + \frac{1}{{{k_2}}}slaw \text{，}$ (12)

 $\begin{split} \dot {V} = &s\left( {f\left( x \right) - \hat {f}\left( x \right) + slaw} \right) + \frac{1}{\gamma }{{\tilde {W}}^{\rm{T}}}\dot {\hat {W}}= \\ & s\left( { - {{\tilde {W}}^{\rm{T}}}h\left( x \right) + \varepsilon + slaw} \right) + \frac{1}{\gamma }{{\tilde {W}}^{\rm{T}}}\dot {\hat {W }} =\\ &\varepsilon s + slaw \cdot s + {{\tilde {W}}^{\rm{T}}}\left( {\frac{1}{\gamma }\dot{ \hat {W}} - sh\left( x \right)} \right) \text{。} \end{split}$ (13)

 $\begin{split} \dot V =& \varepsilon s + slaw \cdot s = s\left( {\varepsilon + {D^{1 - \alpha }}\left( { - \zeta {sgn} s} \right)} \right)= \\ & \varepsilon s - \left| s \right|{D^{1 - \alpha }}\zeta \leqslant \left| {{\varepsilon _N}} \right|\left| s \right| - \left| s \right|{D^{1 - \alpha }}\zeta \leqslant \\ & - \left( {{D^{1 - \alpha }}\zeta - \left| {{\varepsilon _N}} \right|} \right)\left| s \right| \text{。} \end{split}$ (14)

3 仿真分析

3.1 功率变化分析

 图 4 蓄电池组功率变化图 Fig. 4 Change chart of battery pack power

 图 5 发电机功率变化图 Fig. 5 Change diagram of generator power

3.2 功率效率分析

 图 6 蓄电池组功率投入的效率 Fig. 6 Efficiency of battery pack power input

 图 7 发电机组功率投入效率 Fig. 7 Efficiency of generating set power input

4 结　语

 [1] 陈勇军. 一种新型船用混合动力系统设计[J]. 装备制造技术, 2018(7): 47-50. CHEN Yongjun. Design of a new type of marine hybrid power system[J]. Equipment Manufacturing Technology, 2018(7): 47-50. DOI:10.3969/j.issn.1672-545X.2018.07.016 [2] 刘运新, 马川. 一种新型船用燃料电池混合动力系统的建模[J]. 中国航海, 2016, 39(1): 13-16+21. LIU Yunxin, MA Chuan. Modeling of a new type of marine fuel cell hybrid power system[J]. Navigation of China, 2016, 39(1): 13-16+21. DOI:10.3969/j.issn.1000-4653.2016.01.004 [3] 蔡英凤, 窦磊, 陈龙, 等. 基于补偿滑模控制的混合动力汽车协调控制[J]. 汽车工程, 2020, 42(4): 431-438. CAI Yingfeng, DOU Lei, CHEN Long, et al. Hybrid electric vehicle coordinated control based on compensating sliding mode control[J]. Automotive Engineering, 2020, 42(4): 431-438. [4] 史志赛, 刘亮清, 赛军杰, 等. 柴电混合动力改造轴系复装方案[J]. 船舶工程, 2020, 42(1): 63-67. SHI Zhisai, LIU Liangqing, SAI Junjie, et al. Diesel-electric hybrid retrofit shafting reinstallation plan[J]. Ship Engineering, 2020, 42(1): 63-67. [5] 张泽辉, 陈辉, 高海波, 等. 基于实时小波变换的燃料电池混合动力船舶能量管理策略[J]. 中国舰船研究, 2020, 15(02): 127-136. ZHANG Zehui, CHEN Hui, GAO Haibo, et al. Energy management strategy for fuel cell hybrid ships based on real-time wavelet transform[J]. China Ship Research, 2020, 15(02): 127-136. [6] 陈剑龙, 刘俊峰, 王振刚, 等. 基于DRL的无人船混合动力系统能量管理策略研究[J]. 中国测试, 2020, 46(02): 9-15. CHEN Jianlong, LIU Junfeng, WANG Zhengang, et al. Research on energy management strategy of unmanned ship hybrid power system based on DRL[J]. China Measurement and Test, 2020, 46(02): 9-15. [7] YANG Rui, YUAN Yupeng, YING Rushun, et al. A novel energy management strategy for a ship’s hybrid solar energy generation system using a particle swarm optimization algorithm[J]. Energies, 2020, 13(6). [8] 韩北川. 基于模糊控制的混合动力船舶能量管理策略研究[J]. 机电工程技术, 2019, 48(7): 84-87. HAN Beichuan. Research on energy management strategy of hybrid power ship based on fuzzy control[J]. Mechanical and Electrical Engineering Technology, 2019, 48(7): 84-87. DOI:10.3969/j.issn.1009-9492.2019.07.030 [9] 王永鼎, 程湘裕. 基于BDS的混合动力船舶节能研究[J]. 全球定位系统, 2020, 45(2): 112-118. WANG Yongding, CHENG Xiangyu. Research on energy saving of hybrid power ships based on BDS[J]. Global Positioning System, 2020, 45(2): 112-118. [10] 李书舟, 容慧, 彭勇. 基于瞬时优化的船舶机电电机混合动力控制系统研究[J]. 舰船科学技术, 2018, 40(12): 91-93. LI Shuzhou, RONG Hui, PENG Yong. Research on ship electromechanical motor hybrid power control system based on instantaneous optimization[J]. Ship Science and Technology, 2018, 40(12): 91-93. [11] 高以康, 张新塘, 徐达. 内河船舶液化天然气发动机-蓄电池混合动力系统性能仿真[J]. 内燃机工程, 2020, 41(1): 42-48+56. GAO Yikang, ZHANG Xintang, XU Da. Performance simulation of inland watercraft LNG engine-battery hybrid power system[J]. Internal Combustion Engine Engineering, 2020, 41(1): 42-48+56. [12] 赵福海, 王锡淮. 燃料电池锂电池混合动力船舶建模与仿真[J]. 船电技术, 2019, 39(10): 33-36+41. ZHAO Fuhai, WANG Xihuai. Modeling and simulation of fuel cell lithium battery hybrid power ship[J]. Ship Electric Technology, 2019, 39(10): 33-36+41. DOI:10.3969/j.issn.1003-4862.2019.10.009 [13] CHEN Hui, ZHANG Zehui, GUAN Cong, et al. Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship[J]. Energy, 2020, 197.