﻿ 微纳米多孔梯度材料隔声性能试验研究
 舰船科学技术  2021, Vol. 43 Issue (11): 74-78    DOI: 10.3404/j.issn.1672-7649.2021.11.013 PDF

1. 海军研究院，北京 100161;
2. 哈尔滨工程大学，黑龙江 哈尔滨 150001

Experimental study on sound insulation performance of micro-nano porous gradient materials
YANG Kun1, ZHANG Hang2, PANG Fu-zhen2
1. Naval Research Institute, Beijing 100161, China;
2. Harbin Engineering University, Harbin 150001, China
Abstract: Aiming at the problem of noise control in ship cabin, the acoustic performance of micro-nano porous materials was studied. The direct measurement method was used, and the average sound pressure level inside and outside the simulated cabin is taken as the evaluation standard. The sound insulation performance of simulated cabin excited by white noise from non-directional sound source was studied, and the influence of micro-nano porous materials on sound insulation performance of simulated cabin was investigated. The results show that the reverberation time of simulated cabin without laying in frequency range of 80 Hz-20 kHz is characterized by "large low frequency and small high frequency", and for micro-nano porous gradient material laying, the reverberation time of the whole frequency band of simulation cabin is basically unchanged; Nano porous gradient material can effectively improve the sound insulation of simulated cabin, and the noise reduction is 15.8 dB (A).
Key words: micro-nano porous gradient materials     simulated cabin     sound insulation performance     cabin noise
0 引　言

1 测试原理

 ${\varepsilon _{\text{1}}} = \frac{{{\text{4}}W}}{{c{R_1}}} \text{。}$ (1)

 ${W_1} = {{{\varepsilon _1}cS} /4}\text{，}$ (2)

 ${W_2} = \tau {W_1} = {{\tau {\varepsilon _1}cS} / 4} \text{，}$ (3)

 ${\varepsilon _2} = {{4{W_2}} /{(c{R_2})}} \text{。}$ (4)

 $\varepsilon = {{{p^2}} /{(\rho c)}} \text{，}$ (5)

 $TL = {L_1} - {L_2} + 10\lg ({S/ {{R_2}}})\text{。}$ (6)

 $TL = {L_1} - {L_2} + 10\lg ({S/ A})\text{。}$ (7)

 ${D_{nT}} = {L_1} - {L_2} + 10\lg ({T /{{T_0}}})\text{。}$ (8)

 $L = 10\lg \left(\frac{1}{n}\sum\limits_{j = 1}^n {{{10}^{{{{L_j}} / {10}}}}} \right) \text{。}$ (9)
2 试验模型和测试工况 2.1 试验模型

 图 1 模拟舱室实物图 Fig. 1 Physical drawing of simulated cabin

 图 2 微纳米多孔材料样件 Fig. 2 Sample of micro-nano porous gradient materials

 图 3 微纳米多孔材料标准样件 Fig. 3 Standard sample of micro-nano porous gradient materials

 图 4 微纳米多孔梯度材料样件吸声系数 Fig. 4 Sound absorption coefficient of micro-nano porous gradient materials

 图 5 模拟舱室敷设微纳米多孔梯度材料实物图 Fig. 5 Physical drawing of micro-nano porous gradient materials in simulated cabin
2.2 测试工况

 图 6 试验测试原理图 Fig. 6 Schematic diagram of test
3 测试结果和数据分析 3.1 混响时间测试

 图 7 敷设微纳米多孔梯度材料前后模拟舱室混响时间对比 Fig. 7 Comparison of reverberation time of simulated cabin before and after laying micro-nano porous gradient materials

3.2 隔声性能测试

 图 8 模拟舱室内外平均声压时域信号 Fig. 8 Time domain signal of mean sound pressure inside and outside simulated cabin

 图 9 模拟舱室内外测点平均声压级 Fig. 9 Frequency domain signal of mean sound pressure inside and outside simulated cabin

 图 10 微纳米多孔梯度材料敷设前后隔声量结果 Fig. 10 Results of sound insulation of micro-nano porous gradient materials before and after laying

4 结　语

1）80 Hz～20 kHz频段范围内，无敷设模拟舱室混响时间呈“低频大、高频小”的特点，敷设微纳米多孔梯度材料模拟舱室全频段混响时间基本无变化。

2）敷设微纳米多孔梯度材料后，模拟舱室隔声量提高18.3 dB（A），具备较大的声学优势，且因具备一定的弹性模量，安装更为方便。

3）综合微纳米多孔梯度材料密度、基本力学性能和隔声能力，未来进一步对微纳米多孔梯度材料进行重量、力学和声学综合优化设计，兼具结构和降噪功能，可作为舰船舱室空气噪声控制技术发展方向之一。

 [1] 陈玉丽, 马勇, 潘飞, 等. 多尺度复合材料力学研究进展[J]. 固体力学学报, 2018, 39(1): 1-68. [2] 李泽成, 吴国妹, 邱立凡, 等. 居住舱室分割壁板的隔声性能研究[C]//第16届船舶水下噪声学术讨论会论文集, 2017: 5. [3] 鲍舒婷. 超细玻璃棉丝的隔声性能研究 [D]. 南京: 南京航空航天大学, 2018. [4] 胡胜, 陈绍艺, 吴晓文, 等. 复合共振吸隔声屏障设计与性能研究[J]. 工业安全与环保, 2019, 45(7): 77-80+96. DOI:10.3969/j.issn.1001-425X.2019.07.019 [5] 周理杰, 罗胜利, 晏雄, 等. 材料和空腔深度对吸声系数测定影响的研究[J]. 中国纤检, 2017, 3: 80-3. DOI:10.3969/j.issn.1671-4466.2017.05.024 [6] 周国建, 吴九汇, 路宽, 等. 多态反共振协同型薄膜声学超材料低频隔声性能[J]. 西安交通大学学报, 2020, 54(1): 64-74. [7] 李峰, 徐芹亮, 滕瑶等. 统计能量法在船舶噪声与振动控制中的应用[J]. 噪声与振动控制, 2011, 31(6): 152-5. DOI:10.3969/j.issn.1006-1355-2011.06.034 [8] 张颖, 安利强, 周邢银, 等. 弯扭耦合层合板模态特性数值模拟与试验研究[J]. 振动与冲击, 2021, 40(8): 194-200.