﻿ 基于STAR-CCM+的双体船阻力预报
 舰船科学技术  2021, Vol. 43 Issue (11): 47-51    DOI: 10.3404/j.issn.1672-7649.2021.11.008 PDF

Catamaran resistance prediction based on STAR-CCM+
XIONG Zhi-xin, LI Jin-wang, XU Lei-dong
Shanghai Maritime University, Shanghai 201306, China
Abstract: It is important to study the fast and resistance performance of ships for ship design and optimization. In this paper, we use a multifunctional marine catamaran as the object of study, and use the CFD software STAR-CCM+ to calculate the resistance of the catamaran in hydrostatic navigation and wave added resistance under different working conditions, and compare it with the calculation results of quadric conversion and three-dimensional extrapolation, and analyze the relationship between the total resistance coefficient and navigation speed and the relationship between wave added resistance and wavelength, the results indicate that the total resistance coefficient peaks of the catamaran at a navigation speed of 20kn, The wave added resistance coefficient peaks at the λ/L=1.25, The calculations show that the use of STAR-CCM+ software for the prediction of catamaran fast and resistance performance has the advantages of fast calculation speed and high accuracy, which can be promoted and applied in the estimation of catamaran resistance performance.
Key words: catamaran     STAR-CCM+     calm water resistance     wave added resistance coefficient
0 引　言

1 双体船的换算和建模

 图 1 双体船计算域以及网格划分 Fig. 1 Catamaran computational domain and grid partition
2 船舶阻力的计算 2.1 STAR-CCM+计算船舶阻力

 图 2 总阻力系数与航速的关系和CFD数值计算结果与实验计算的对比 Fig. 2 Effect of velocity on total drag coefficient and comparison of experimental and CFD calculated values

2.2 实尺度法计算船舶阻力

 图 3 实尺度法计算的双体船总阻力系数和总阻力与航速的关系 Fig. 3 Catamaran total drag coefficient and total drag versus for catamaran by full-scale calculation

 图 4 总阻力系数和总阻力与航速的关系 Fig. 4 Total drag coefficient and total drag versus velocity

3 基于STAR-CCM+的双体船波浪增阻系数计算

 图 5 波幅0.55 m时的自由液面波形图 Fig. 5 Free surface waveform at h=0.55 m

 图 6 双体船波浪阻力值及阻力系数变化曲线 Fig. 6 Curves of wave resistance value and resistance coefficient
4 结　语

 [1] 张进峰,石志超,项勇. 寒潮大风浪中船舶失速数值计算[J]. 大连海事大学学报, 2014, 40(2): 39-42. ZHANG Jin-feng, Shi Zhi-chao, Xiang Yong. Numerical calculation of ship speed loss in rough seas with cold wave[J]. Journal of Dalian Maritime University, 2014, 40(2): 39-42. [2] CHUANG Zhenju, STEEN Sverre. Speed loss of a vessel sailing in oblique waves[J]. Ocean Engineering, 2013, 64. [3] HIDEO O, HIDEAKI M. Evaluation of added resistance in regular incident waves by computational fluid dynamics motion simulation using an overlapping grid system[J]. Journal of Marine Science and Technology, 2003, 8(2). [4] 蒋志鹏. 耙吸挖泥船航速与拖力预报研究 [D].上海上海交通大学, 2012. JIANG Zhi-peng. Study of ship speed & drag force prediction on trailing suction hopper dredger[D]. Shanghai: Shanghai Jiao Tong University, 2012. [5] 魏可可, 高霄鹏. 基于STAR-CCM+对5415船模的阻力预报[J]. 兵器装备工程学报, 2016, 37(9): 157-161. WEI Ke-ke, GAO Xiao-peng. Resistance prediction of 5415 ship model based on STAR-CCM+[J]. Journal of Ordnance Equipment Engineering, 2016, 37(9): 157-161. [6] 程红蓉, 李百齐. 关于 EEDI 衡准方法的比较研究[J]. 中国造船, 2012, 53(3): 103-109. CHENG Hong-rong, LI Bai-qi. Comparison about EEDI criterion methods[J]. Shipbuilding of China, 2012, 53(3): 103-109. [7] BLANCA P, MUK-PAVIC E, PATRICK F. Detailed analysis of the flow within the boundary layer and wake of a full-scale ship[J]. Ocean Engineering, 2020, 218(2020): 108022. [8] 盛振邦, 刘应中. 船舶原理[M].上海: 上海交通大学出版社, 2004. [9] 谢云平, 高天敏, 谢蔚刚, 等. M型风电运维船船型设计与波浪增阻及耐波性能[J]. 船舶工程, 2020, 42(6): 26-31. XIE Yun-ping, GAO Tian-min, XIE Wei-gang, et al. Hull form design, added resistance in wave and wave resistance performance of M-type wind power maintenance vessel[J]. Ship Engineering, 2020, 42(6): 26-31.