﻿ ONR内倾船在方形波浪中航行非线性特性研究
 舰船科学技术  2021, Vol. 43 Issue (11): 6-13    DOI: 10.3404/j.issn.1672-7649.2021.11.002 PDF
ONR内倾船在方形波浪中航行非线性特性研究

Research on nonlinear properties of ONR tumblehome motion in cross wave
ZENG Ke, GU Min, WANG Xi-jian, LU Jiang
China Ship Scientific Research Center, Wuxi 214082, China
Abstract: In this paper the international standard model ONR tumblehome are taken as an example, firstly, the calculation method is introduced. Then the numerical simulation method of cross wave is established by numerical wave tank. At last, based on the established simulation method of ship motion in cross wave, the nonlinear characteristics of ship motion with different wave headings, speeds and wave slopes are studied under typical cross wave conditions, and the results are compared with the motion in regular wave. The research shows that the motion responses of ship increase with the higher speed and wave slope in cross wave; The motion responses of ship are generally much greater than those in regular waves under some cross wave conditions; The sailing safety of ship when subjects to cross waves can be improved by reducing the speed and adopting the reasonably navigational route. The research in this paper would provide useful preference for evaluating the sailing performance and safely controlling of ship in cross waves.
Key words: cross wave     motion response     nonlinear
0 引　言

 图 1 典型的方波示意图 Fig. 1 Typical cross wave

1 数值计算方法及研究对象 1.1 计算模型

1.2 计算域网格及边界条件

 图 2 计算域示意图 Fig. 2 Computational domain

 图 3 计算域网格拓扑结构示意图 Fig. 3 Topology structure of mesh
1.3 计算对象

 图 4 ONR内倾船三维几何模型图 Fig. 4 3D geometric model of ONRT

 图 5 单向规则波浪向角定义图 Fig. 5 Heading angle of regular wave

 图 6 方形波浪浪向角定义图 Fig. 6 Heading angle of cross wave
2 方形波浪数值模拟与分析

 图 7 方形波浪监测点及波峰、波谷位置示意图 Fig. 7 The monitors of cross wave and the position of wave crest and trough

 图 8 不同波高下方形波浪数值模拟与理论结果对比图（Monitor 5） Fig. 8 The comparison of simulations and theory solutions in different wave heights（Monitor 5）

 图 9 不同波高下方形波浪自由面波形图 Fig. 9 The free surface wave pattern in different wave heights
3 ONR内倾船在方形波浪中运动模拟

3.1 不同浪向下运动响应分析

 图 10 方形波浪和单向规则波中不同浪向下垂荡、横摇、纵摇运动时历曲线（Fn=0.0） Fig. 10 The time history of heave、roll and pitch in different heading angles with regular wave and cross wave（Fn=0.0）

3.2 不同航速下运动响应分析

 图 11 方形波浪和单向规则波中不同航速下垂荡运动时历曲线 Fig. 11 The time history of heave in different speed with regular wave and cross wave

 图 12 方形波浪和单向规则波中不同航速下横摇运动时历曲线 Fig. 12 The time history of roll in different speed with regular wave and cross wave

 图 13 方形波浪和单向规则波中不同航速下纵摇运动时历曲线 Fig. 13 The time history of pitch in different speed with regular wave and cross wave

 图 14 方形波浪中非对称波浪作用下不同航速自由面波形图 Fig. 14 The free surface wave pattern of asymmetric cross wave in different speed

 图 15 方形波浪中对称波浪作用下不同航速自由面波形图 Fig. 15 The free surface wave pattern of symmetric cross wave in different speed
3.3 不同波陡下运动响应分析

 图 16 方形波浪和单向规则波中不同波陡下运动时历曲线（Fn=0.2） Fig. 16 The time history of motion in different wave steepness with regular wave and cross wave (Fn=0.2)

 图 17 方形波浪中一个波浪遭遇周期内甲板上浪示意图（Fn=0.01， $H/\lambda$ =0.03） Fig. 17 The green water in one wave encounter period with cross wave (Fn=0.01, $H/\lambda$ =0.03)
4 方形波浪中船舶航行安全策略分析

1）考虑非对称波浪作用的情形

 图 18 非对称波浪作用下方形波浪和单向规则波中运动幅值对比（H/λ=0.01） Fig. 18 The comparison of motion amplitudes with cross wave and regular wave by asymmetric wave force （H/λ=0.01）

 图 19 非对称波浪作用下方形波浪和单向规则波中运动幅值对比（Fn=0.2） Fig. 19 The comparison of motion amplitudes with cross wave and regular wave by asymmetric wave force（Fn=0.2）

2）考虑对称波浪作用的情形

 图 20 对称波浪作用下方形波浪和单向规则波中运动幅值对比（H/λ=0.01） Fig. 20 The comparison of motion amplitudes with cross wave and regular wave by symmetric wave force （H/λ=0.01）
5 结　语

1）零航速时，在方形波浪中对称波浪条件下（SWb，SWd），除了横摇运动（对称波浪作用下横摇幅值很小），纵摇和升沉都大于非对称波浪条件作用的方形波和单向规则波下的运动幅值。

2）随着航速和波陡的增加，船舶在方形波浪中的运动幅值也随之增加。方形波浪下的垂荡幅值要大于单向规则波下的运动幅值。在非对称波浪作用下，方形波浪中横摇幅值要明显大于单向规则波中的运动幅值。

3）为了减小方形波浪中的航行危险，可以采用减小航速的方法。同时，在对称波浪作用下，通过改变航向合理地选择波浪中的航行线路，也可以有效地提高方形波浪下的航行安全。

 [1] TOFFOLIA A, LEFEVRE J. M., BITNER-GREGERSEN E., et al.. Towards the identification of warning criteria: Analysis of a ship accident database[J]. Applied Ocean Research, 27, 2005, 281-291. [2] ONORATO M, PROMENT D., TOFFOLI A... Freak waves in crossing seas[J]. The European Physical Journal Special Topics, 2010(185): 45-55. DOI:10.1140/epjst/e2010-01237-8 [3] MCALLISTER M. L., DRAYCOTT S., ADCOCK T. A. A... Laboratory recreation of the Draupner wave and the role of breaking in crossing seas[J]. J. Fluid Mech, 2019(860): 767-786. [4] BRENNAN J., FRED ´ERIC DIAS. [C]//Proceedings of the ASME 34th International Conference on Ocean, Offshore and Arctic Engineering, 2015, Newfoundland, Canada. [5] LI Xiaoming, THOMAS K, JOHANNES S-S, et al. Validation and intercomparison of ocean wave spectra inversion schemes using ASAR wave mode data[J]. International Journal of Remote Sensing, 2010(31): 4969-4993. [6] RENAUD M, REZENDE F, WAALS O. Second−order wave loads on a LNG carrier in multi−directional waves[C]//Proceedings of the ASME 27th International Conference on Ocean, Offshore and Arctic Engineering, June 15−20, 2008, Estoril, Portugal. [7] KIM J, O’SULLIVAN J, READ A. Ringing analysis on a vertical cylinder by Euler overlay method[C]//Proceedings of the ASME 31st International Conference on Ocean, Offshore and Arctic Engineering, 2012, Rio de Janeiro, Brazil.