﻿ 电磁炮弹丸的高速侵彻贯穿研究
 舰船科学技术  2021, Vol. 43 Issue (7): 182-186    DOI: 10.3404/j.issn.1672-7649.2021.07.037 PDF

Research on high speed penetration of electromagnetic gun projectile
JIAO Deng-wei, SHANG Li-bin, LI Xiao-feng
The 713 Research Institute of CSSC, Zhengzhou 450015, China
Abstract: In response to the electromagnetic gun penetration test announced by the US Navy, a high-speed projectile penetration model was established using the finite element program. Combined with Johnson-cook equation and verified material parameters, a simulation study on the electromagnetic gun projectile high speed penetration into 45# steel was carried out. The results show that the length and mass loss of the electromagnetic gun projectile is carried out in a mushroom head erosion cycle, and the end point characteristics are greatle affected by the initial velocity of the projectile and the thickness of the target plate.
Key words: electromagnetic gun projectile     penetration     erosion cycle
0 引　言

1 有限元模型建立

 图 1 电磁轨道炮弹丸及侵彻有限元模型 Fig. 1 The electromagnetic gun projectile and penetration finite model
2 本构模型和材料参数 2.1 本构模型

 ${\sigma }_{e}=\left(A+B{\overline{\varepsilon }}_{p}^{n}\right)\left(1+C\mathrm{ln}{\dot{\varepsilon }}^{*}\right)\left(1-{T}^{*m}\right)\text{。}$ (1)

 $D=\sum {\Delta \varepsilon }_{p}/{\varepsilon }^{f} \text{。}$ (2)

2.2 材料参数及验证

93钨合金和45#钢的Johnson-Cook材料参数可在大量文献中查询，本文根据文献[9-10]设置93钨合金和45#钢的Johnson-Cook材料参数，如表1所示。

 图 2 靶板仿真结果与试验结果对比 Fig. 2 The comparison of target board simulation results and test results
3 计算结果及讨论

 图 3 弹丸侵彻贯穿金属靶过程 Fig. 3 The process of projectile penetrating the metal target board

 图 4 弹丸（1/4）的质量损失曲线 Fig. 4 The mass loss curve of the projectile（1/4）

 图 5 弹丸结果图 Fig. 5 The projectile result graph

 图 6 靶板迎面与背面破坏图 Fig. 6 The front and back damage of the target board

4 影响因数分析 4.1 侵彻速度影响

 图 7 不同侵彻速度下的动能损失 Fig. 7 The kinetic energy loss at different initial velocities

 图 8 不同侵彻速度下弹丸结构对比 Fig. 8 The projectile structure comparison with different penetration speeds

4.2 靶板厚度影响

 图 9 不同靶板厚度下弹丸结构对比 Fig. 9 The projectile structure comparision with different target board thickness

5 结　语

1）电磁炮弹丸高速侵彻钢靶的试验呈现出明显的3阶段过程，试验中弹丸长度损失及质量损失以“蘑菇头”的销蚀循环方式进行，最终靶板弹道形如欧式花瓶状，最大直径先减小后增大；

2）受侵彻速度的影响，弹丸长度损失、质量损失及动能损失随侵彻速度的增大而减小；受靶板厚度的影响，三者随靶板厚度的增加而增大；

3）试验中弹丸出现“颈缩”特征，侧壁出现剐蹭销蚀。受侵彻速度及靶板厚度的影响，当侵彻速度大于1000 m/s或靶板厚度大于弹丸长度的4/13时，弹丸出现上述特征。

 [1] 刘凯. 电磁炮用集束脱壳穿甲弹技术研究[D]. 南京: 南京理工大学, 2014.3. LIU K. Technology study on cluster APDS in electromagnetic raingun[D]. Nanjing: Nanjing University of Science & Technology, 2014.3. [2] 邱群先, 高博, 刘可可. 电磁轨道炮超高速弹丸侵彻靶板仿真研究[J]. 舰船科学技术, 2020, 42(1): 181-185. QIU Q X, GAOB, LIU K K. Simulation study on penetration into target of hypervelocity projectile in electromagnetic railgun[J]. Ship Science and Technology, 2020, 42(1): 181-185. [3] 史梁, 沈培辉, 薛建锋. 弹体高速侵彻半无限钢靶的研究[J]. 兵工自动化, 2016, 35(1): 34-36. SHI L, SHEN P H, XUE J F. Study of projectile penetration into semi-infinite steel targets[J]. Ordnance Industry Automation, 2016, 35(1): 34-36. DOI:10.7690/bgzdh.2016.01.010 [4] 兰彬, 文鹤鸣. 钨合金长杆弹侵彻半无限钢靶的数值模拟及分析[J]. 高压物理学报, 2008, 22(3): 245-252. LAN B, WENHM. Numerical simulation and analysis of the penetration of tungsten-alloy long rod into semi-infinite armor steel targets[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 245-252. DOI:10.3969/j.issn.1000-5773.2008.03.004 [5] 吴世永, 王伟力, 江炎兰. 钨合金弹侵彻圆柱壳靶板的数值模拟[J]. 四川兵工学报, 2011, 32(11): 29-32. [6] 袁亚楠, 胡健, 王少龙, 等. 钨合金长杆弹斜侵彻间隔靶的数值仿真与试验[J]. 四川兵工学报, 2011, 32(7): 10-15. [7] 程兴旺, 王富耻, 李树奎, 等. 不同头部形状长杆弹侵彻过程的数值模拟[J]. 四川兵工学报, 2007, 28(8): 930-933. [8] GORDON R. Johnson, WILLISM H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. [9] 王猛. 细晶钨合金穿甲弹芯侵彻机理分析及试验研究[D]. 南京: 南京理工大学, 2013.5. [10] 王维占, 赵太勇, 陈志刚, 等. 不同材料双层球缺罩侵彻特性的研究[J]. 爆破器材, 2017, 46(5): 43-47. DOI:10.3969/j.issn.1001-8352.2017.05.009 [11] 丛美华, 黄德武, 段占强, 等. 小口径穿甲试验靶板弹孔和残余弹体显微组织研究[J]. 2002, 22(5): 594−598.