﻿ 适用于深海的电动缸设计
 舰船科学技术  2021, Vol. 43 Issue (7): 109-113    DOI: 10.3404/j.issn.1672-7649.2021.07.022 PDF

Design of electric cylinder suitable for deep-sea
PAN Ping
Wuhan National Laboratory for Optoelectronics, Huazhong Institute of Electro-Optics, Wuhan 430223, China
Abstract: In order to replace the hydraulic cylinder and apply the electric cylinder to the deep-sea environment, a series of problems need to be solved in the design of the electric cylinder. In the deep water pressure environment, the electric cylinder needs to meet the self-locking requirements. Through the analysis of the self-locking mechanism, the trapezoidal screw pair with good reliability is selected as the transmission mechanism, and the checking formula is given. The reliability of reciprocating dynamic seal of push rod in deep-sea electric cylinder is enhanced by using combined dynamic seal and thermal spraying ceramic design of push rod. Aiming at the limitation of the weight and size of the electric cylinder, a three-dimensional software finite element analysis plug-in is used to synchronously realize the simulation and verification of the stress and strain of the electric cylinder parts.
Key words: self-locking of transmission mechanism     trapezoidal screw     reciprocating dynamic seal     thermal spraying ceramics     stress-strain simulation
0 引　言

1 电动缸自锁

2 梯形丝杆设计校核

1）梯形丝杆副螺纹参数计算

 ${{d}}_{2}\geqslant \xi \sqrt{\frac{F}{\psi \left[p\right]}} \text{。}$ (1)

2）梯形丝杆自锁验算

 $\mathrm{\varnothing }<{\mathrm{\rho }}'\text{。}$ (2)

3）计算驱动扭矩

 ${T}_{1}=F\frac{{d}_{2}}{2}\mathrm{tan}\left(\mathrm{\varnothing }+{\rho }'\right) ,$ (3)

4）梯形滑动丝杆传动效率

 $\mathrm{\eta }=\left(0.95{\text{～}}0.99\right)\frac{tan\mathrm{\varnothing }}{\mathrm{tan}\left(\mathrm{\varnothing }+{\rho }'\right)}\text{。}$ (4)

5）梯形丝杆副材质确定

3 往复动密封设计

1）结构组合的密封件产品

2）材料组合的密封件产品

3）特殊截面形状的密封件产品

 图 1 动密封结构示意图 Fig. 1 Structure diagram of moving seal

 图 2 选用的往复密封件示意 Fig. 2 Schematic diagram of selected reciprocating seals

4 有限元应力与应变分析校核

SolidWorks SimulationXpress采用静力学有限元分析，将复杂物体分成简单的，有限多个的小四面体，计算机在简单的小四面体上计算出结果后，反向叠加，就可以生成复杂结构的应力分析结果[13]

SolidWorks SimulationXpress模型分析的关键步骤：

SolidWorks SimulationXpress会提供受力后的动态应变图，并提供仿真后应力及应变分布图，非常直观。如果计算结果在规律上明显错误，或者与实际模型明显不符，则需要检查改进分析方案，重新进行分析。

 图 3 推杆受力时应力及应变仿真分析结果 Fig. 3 Simulation analysis results of stress and strain of push rod under force

 图 4 执行机构与电机外壳应力及应变仿真分析结果 Fig. 4 Simulation analysis results of stress and strain of actuator and motor shell

5 结　语

 [1] 闫飞飞, 电动缸的测试系统设计及建模[D]. 合肥: 中国科学技术大学, 2011. YAN Fei-fei, Design of test system and modeling of electric cylinder[D].Hefei: University of Science and Technology of China, 2011. [2] 周昊, 电动缸位置伺服控制系统设计[D]. 大连: 大连海事大学, 2014. ZHOU Hao, Design of Servo Position Control System for Electric Cylinder[D],Dalian: Dalian Maritime University, 2014. [3] 蓝坤彦. 力学中的“自锁”现象探秘[J]. 物理教师, 2008(12): 33-34. LAN Kun-yan. The self-locking phenomenon in mechanics[J]. Physics teacher, 2008(12): 33-34. DOI:10.3969/j.issn.1002-042X.2008.12.019 [4] 陈超, 赵升吨, 崔敏超, 等. 电动缸的研究现状与发展趋势[J]. 机械传动, 2015(3): 181-186. CHEN Chao, ZHAO Sheng-don, CUI Min-chao et al. Research status and development trend of electric cylinder[J]. Mechanical transmission, 2015(3): 181-186. [5] 朱正平. 蜗杆蜗轮机构的自锁性及其失效原因分析[J]. 中国新技术新产品, 2016(7): 43-44. ZHU Zheng-ping. Analysis of self-locking and failure of worm gear mechanism[J]. New Technology New Products of China, 2016(7): 43-44. DOI:10.3969/j.issn.1673-9957.2016.07.030 [6] 朱正平. 行星齿轮减速器效率及自锁分析[J]. 科技与企业, 2016(9): 176. ZHU Zheng-ping. Efficiency and self-locking analysis of planetary gear reducer[J]. Technology & Enterprise, 2016(9): 176. DOI:10.3969/j.issn.1004-9207.2016.09.160 [7] 饶振钢, 王勇卫. 滚珠丝杠副及自锁装置[M]. 北京: 国防工业出版社, 1990. [8] 杨继隆, 俞浙青, 裴翔, 等. 液压往复密封的技术进展[J]. 中国机械工程, 2001(7): 842-846. YANG Ji-long, YU zhe-qing, PEI Xiang et. Technical progress of hydraulic reciprocating seal[J]. China Mechanical Engineering, 2001(7): 842-846. DOI:10.3321/j.issn:1004-132X.2001.07.034 [9] 姚碎全. 斯特封密封特性分析[J]. 液压气动与密封, 2003(5): 33-35. YAO Xian-quan. Analysis Seal Specialty of Turcon-stepseal k[J]. Hydraulics Pneumatics & Seals, 2003(5): 33-35. DOI:10.3969/j.issn.1008-0813.2003.05.014 [10] 王国荣, 胡刚, 何霞, 等. 往复密封轴用Y形密封圈密封性能分析[J]. 机械设计与研究, 2014(6): 37-42. WANG Guo-rong, HU Gang, HE Xia et al. Sealing performance analysis of Y-ring used on reciprocating seal shaft[J]. Machine Design & Research, 2014(6): 37-42. [11] 陈国强, 陶友瑞. 高压水介质往复密封接触特性有限元分析[J]. 润滑与密封, 2015(5): 42-46. CHEN Guo-qiang, TAO You-Rui. Finite element analysis of contact characteristics of reciprocating seal structure under high-pressure water medium[J]. Lubrication Engineering, 2015(5): 42-46. [12] 张宇, 刘萍, 张树人. 陶瓷涂层液压缸及位移测量系统[J]. 液压气动与密封, 2000(3): 49-50. ZHANG Yu, LIU Ping, ZHANG Shu-ren. Ceramic coated hydraulic cylinder and displacement measurement system[J]. Hydraulics Pneumatics & Seals, 2000(3): 49-50. [13] DS SolidWorks公司. SolidWorks Simulation基础教程[M]. 北京: 机械工业出版社, 2010.