﻿ 摇摆对窄矩形通道内流量波动特性的影响
 舰船科学技术  2021, Vol. 43 Issue (7): 74-77    DOI: 10.3404/j.issn.1672-7649.2021.07.015 PDF

1. 海军驻武汉七〇一所军事代表室，湖北 武汉 430064;
2. 中国舰船研究设计中心，湖北 武汉 430064

Effects of rolling motion on fluctuation characteristics of flow rate in a rectangular narrow channel
WU Lian-wei1, CHEN Chong2, WU Wei2, SUN Ling2, LIU Dong-min2
1. Naval Representatives Office in 701 Research Institute, Wuhan 430064, China;
2. China Ship Development and Design Center, Wuhan 430064, China
Abstract: In order to investigate the flow rate fluctuation characteristics of the ship fluid system under rolling motion, a rolling experimental platform was established to simulate the ocean conditions, and the flow fluctuation characteristics in a rectangular narrow channel was studied. The results demonstrate that the fluid will be effect by the additional inertia forces under rolling motion, the flow rate will fluctuate periodically, and the fluctuation period is same with the rolling period. The fluctuation amplitudes of additional tangential pressure drop and additional radial pressure drop will increase rapidly with the increase of rolling angle and rolling frequency, but the mass flow rate will decrease with increasing rolling amplitude and frequency. The relative pulsation amplitude of mass flow rate will increase with the increase of rolling amplitude and rolling frequency, while decreasing with the increase of Reynolds number.
Key words: rolling motion     flow rate fluctuation     rectangular narrow channel     additional pressure drop     ocean conditions     additional inertia forces
0 引　言

1 实验装置

 图 1 机械摇摆热工水力实验装置 Fig. 1 Mechanical rolling thermal-hydraulic experimental facility

 ${\theta _t} = {\theta _{\max }}\sin \left( {2\text{π} {\rm{/}}T} \right){\text，}$ (1)

 ${\omega _t} = \frac{{2\text{π} }}{T}{\theta _{\max }}\cos \left( {2\text{π} t{\rm{/}}T} \right){\text，}$ (2)
 ${\beta _t} = - {\left( {\frac{{2\text{π} }}{T}} \right)^2}{\theta _{\max }}\sin \left( {2\text{π} t/T} \right){\text。}$ (3)

2 窄矩形通道附加压降的理论分析

 图 2 摇摆工况下流体的受力分析 Fig. 2 Force analysis of fluid element under rolling motion condition
 ${\vec a_{ce}} = \vec w \times \left( {\vec w \times \vec r} \right) = - {w^2}\left( {y\overrightarrow j + z\overrightarrow k } \right){\text，}$ (4)
 ${\vec a_{ta}} = \vec \beta \times \vec r = \beta \left( {y\overrightarrow k - z\overrightarrow j } \right){\text，}$ (5)
 ${\vec a_{co}} = 2\vec \omega \times \vec u {\text。}$ (6)

 $\Delta {p_{add,12}} \!=\! \frac{1}{{{A_{cs}}}}\!\int_1^2 \!{\frac{{{\rm{d}}\overrightarrow F \cdot {\rm{d}}\overrightarrow l }}{{{\rm{d}}l}}} \!=\! \rho\! \!\int_1^2 {\left( {\overrightarrow {{a_{ce}}} \!+\! \overrightarrow {{a_{ta}}} \!+\! \overrightarrow {{a_{co}}} } \right)} \cdot {\rm{d}}\overrightarrow l {\text。}$ (7)

 $\Delta {p_{add,12}} = \int_1^2 {\rho {\omega ^2}\left( {y{\rm{d}}y + z{\rm{d}}z} \right)} + \int_1^2 {\rho \beta \left( {z{\rm{d}}y - y{\rm{d}}z} \right)} {\text，}$ (8)

 $\Delta {p_{g,v}} = \rho hg\left( {\cos {\theta _t} - 1} \right){\text。}$ (9)

 图 3 附加向心压降 Fig. 3 Additional centripetal pressure drop

 图 4 附加切向压降 Fig. 4 Additional tangential pressure drop

 图 5 重位压降的变化 Fig. 5 Variation of Gravity pressure drop
3 实验结果与讨论

 图 6 摇摆角度对质量流速波动的影响 Fig. 6 Effect of rolling angle on mass flux

 图 7 摇摆周期对质量流速波动的影响 Fig. 7 Effect of rolling period on mass flux

 ${G_{ampr}} = \frac{{{G_{{\rm{max}}}} - {G_{{\rm{min}}}}}}{{{G_{ta}}}}{\text。}$ (10)

 图 8 摇摆角度对质量流速相对波动振幅的影响 Fig. 8 Effect of rolling angle on relative fluctuation amplitude of mass flux

 图 9 摇摆周期对质量流速相对波动振幅的影响 Fig. 9 Effect of rolling period on relative fluctuation amplitude of mass flux
4 结　语

1）摇摆运动下流体会受到切向力、法向力、科氏力的影响导致流量的周期性波动，且流量的波动周期与摇摆周期一致。

2）随着摇摆角度和摇摆频率的增加，附加向心压降和附加切向压降的波动振幅明显增加，且重力和附加切向力对流体的作用效果远大于附加向心力的作用效果。

3）通道质量流速的波动振幅随着摇摆角度和摇摆频率的增加而增加，但时均质量流速随着波动振幅的增加而减小。

4）在摇摆运动下，质量流速的相对波动振幅随着雷诺数的增加而减小，在雷诺数小于4500的区域附加压降对质量流速相对波动振幅的影响比较大，在雷诺数大于4500的区域，附加压降对质量流速相对波动振幅的影响比较小。

 [1] 刘传成, 阎昌琪, 孙立成, 等. 摇摆运动下矩形窄通道内摩擦压降特性研究[J]. 原子能科学技术, 2013(4): 576-581. [2] 王占伟, 谭思超, 张文超, 等. 摇摆运动下自然循环高含汽率流动特性研究[J]. 原子能科学技术, 2013(3): 371-375. [3] 幸奠川, 阎昌琪, 曹夏昕, 等. 摇摆条件下单相水强制循环阻力特性实验研究[J]. 原子能科学技术, 2011(6): 672-676. [4] WANG Chang, WANG Shao-Wu, WANG Hao, et al. Investigation of flow pulsation characteristic in single-phase forced circulation under rolling motion[J]. Annals of Nuclear Energy, 2014, 64(2014): 50-56. [5] WANG Chang, LI Xiaohui, WANG Hao, et al. Experimental study on friction and heat transfer characteristics of pulsating flow in rectangular channel under rolling motion[J]. Progress in Nuclear Energy, 2014, 71(2014): 73-81. [6] XING Dianchuan, YAN Changqi, SUN Licheng, et al. Effect of rolling motion on single-phase laminar flow resistance of forced circulation with different pump head[J]. Annals of Nuclear Energy, 2013, 54(2013): 141-148. [7] XING Dianchuan, YAN Changqi, SUN Licheng, et al. Frictional resistance of adiabatic two-phase flow in narrow rectangular duct under rolling conditions[J]. Annals of Nuclear Energy, 2013, 53(2013): 109-119. [8] YAN B. H., GU H. Y., YANG Y. H., et al. Effect of rolling on the flowing and heat transfer characteristic of turbulent flow in sub-channels[J]. Progress in Nuclear Energy, 2011, 53(1): 59-65. DOI:10.1016/j.pnucene.2010.09.003 [9] Murata Hiroyuki, Sawada Ken-Ichi, Kobayashi Michiyuki. Natural circulation characteristics of a marine reactor in rolling motion and heat transfer in the core[J]. Nuclear Engineering and Design, 2002, 215(1-2): 69-85. DOI:10.1016/S0029-5493(02)00042-0 [10] TAN Si-Chao, SU Guang-Hui, GAO Pu-Zhen. Heat transfer model of single-phase natural circulation flow under a rolling motion condition[J]. Nuclear Engineering and Design, 2009, 239(10): 2212-2216. DOI:10.1016/j.nucengdes.2009.05.002 [11] TAN Si-Chao, SU Guang-Hui, GAO Pu-Zhen. Experimental and theoretical study on single-phase natural circulation flow and heat transfer under rolling motion condition[J]. Applied Thermal Engineering, 2002, 29(14-15): 3160-3168. [12] 高璞珍, 庞凤阁, 王兆祥. 核动力装置一回路冷却剂受海洋条件影响的数学模型[J]. 哈尔滨工程大学学报, 1997, 18(1): 26-29.