﻿ 新型护舷并靠状态下低速碰撞性能评估比较
 舰船科学技术  2021, Vol. 43 Issue (7): 27-32    DOI: 10.3404/j.issn.1672-7649.2021.07.006 PDF

1. 中国人民解放军 92942部队，北京 100161;
2. 中国船舶集团有限公司第七一四研究所，北京 100101

Comparison on low-speed collision performance of new-type fenders between two side-by-side ships
WU Li-yang1, WANG Hua-rong2, ZHANG Xin-fu1, Huang Hai-bo1
1. No.92942 Unit of PLA, Beijing 100161, China;
2. The 714 Research Institute of CSSC, Beijing 100101, China
Abstract: This paper discusses two new-type fenders, the submerged fender and the hydro pneumatic fender, which are suitable for the case of that the connect position between two side-by-side ships is below the water surface.Viaestablishingthe finite element models of two fenders and the two side-by-side ship hulls, this paper evaluates the low-speed collision performance between the ship hulls and the fenders by thenumerical simulation calculation method. For the case of great difference of ship types and the contact position of the two side-by-sideships below the water surface, the performance of the hydro pneumaticfender is better than the submerged fender, which has larger energy absorption and smaller compression. Through the evaluation and comparison on the performance characteristics of thesubmerged fender and the hydro pneumatic fender in low-speed collision, the results can provide the basis for the selection of fenders when two ships side by side.
Key words: side-by-side ships     submerged fender     hydro pneumatic fender     low-speed collision
0 引　言

1 有限元模型建立

1.1 两种护舷的结构形式

1.2 材料模型 1.2.1 潜没式护舷材料模型

 $W = {C_{10}}\left( {{{ I}_{{C}}} - 3} \right) + {C_{20}}{\left( {{{ I}_{{C}}} - 3} \right)^2} + {C_{30}}{\left( {{{ I}_{{C}}} - 3} \right)^3}\text{。}$ (1)

1.2.2 气液混合型护舷材料模型

 $\left[\!\!\!\!\!\! {\begin{array}{*{20}{c}} {{\varepsilon _{11}}}\\ {{\varepsilon _{22}}}\\ {{\varepsilon _{33}}}\\ {{\gamma _{12}}}\\ {{\gamma _{23}}}\\ {{\gamma _{33}}} \end{array}} \!\!\!\!\!\!\right]\!=\! \left[\!\!\!\!\!\! \begin{array}{l} \;1/{E_1}\;\;\;\;\; - {v_{12}}/{E_2}\;\; - {v_{31}}/{E_3}\;\\ - {v_{21}}/{E_1}\;\;\;\;2/{E_2}\;\;\;\; - {v_{23}}/{E_3}\\ - {v_{31}}/{E_1}\; - {v_{32}}/{E_2}\;\;\;\;\;1/{E_3}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;1/{G_{23}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;1/{G_{31}}\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;1/{G_{12}} \end{array} \!\!\!\!\!\!\right]\left[\!\!\!\! {\begin{array}{*{20}{c}} {{\sigma _{11}}}\\ {{\sigma _{22}}}\\ {{\sigma _{33}}}\\ {{\tau _{12}}}\\ {{\tau _{23}}}\\ {{\tau _{33}}} \end{array}} \!\!\!\!\right]{\text。}$ (2)

1.3 护舷模型

 图 1 潜没式护舷单体模型 Fig. 1 The single model of submerged fender

 图 2 气液混合型护舷单体模型 Fig. 2 The single model of hydro pneumatic fender
2 作业工况

 图 3 船1、船2与护舷的整体有限元模型 Fig. 3 The integrated finite model of ship 1, ship 2 and fender

 图 4 两船与1号和2号潜没式护舷的局部有限元模型 Fig. 4 The local finite model of two ships with No.1 and No.2 submerged fender

 图 5 两船与1号和2号气液混合型护舷局部有限元模型 Fig. 5 The local finite model of two ships with No.1 and No.2 hydro pneumatic fender
3 计算分析

3.1 第1种典型工况计算分析

 图 6 与船2接触的潜没式护舷压缩量曲线 Fig. 6 Compression curve of the submerged fender contacted ship 2

 图 7 与船1接触的潜没式护舷压缩量曲线 Fig. 7 Compression curve of the submerged fender contacted ship 1

 图 8 气液混合型护舷压缩量曲线 Fig. 8 Compression curve of the hydro pneumatic fender

 图 9 潜没式护舷对船2法向反力云图 Fig. 9 The cloud chart of normal reaction on ship 2 by the submerged fender

 图 10 气液混合型护舷对船2法向反力云图 Fig. 10 The cloud chart of normal reaction on ship 2 by the hydro pneumatic fender

 图 11 与船2接触的潜没式护舷压缩量曲线 Fig. 11 Compression curve of the submerged fender contacted ship 2

 图 12 与船1接触的潜没式护舷压缩量曲线 Fig. 12 Compression curve of the submerged fender contacted ship 1

 图 13 气液混合型护舷压缩量曲线 Fig. 13 Compression curve of the hydro pneumatic fender

 图 14 潜没式护舷对船2法向反力云图 Fig. 14 The cloud chart of normal reaction on ship 2 by the submerged fender

 图 15 气液混合型护舷对船2法向反力云图 Fig. 15 The cloud chart of normal reaction on ship 2 by the hydro pneumatic fender

3.2 第2种典型工况计算分析

 图 16 与船2接触的潜没式护舷压缩量曲线 Fig. 16 Compression curve of the submerged fender contacted ship 2

 图 17 与船1接触的潜没式护舷压缩量曲线 Fig. 17 Compression curve of the submerged fender contacted ship 1

 图 18 气液混合型护舷压缩量曲线 Fig. 18 Compression Curve of the hydro pneumatic fender

 图 19 潜没式护舷对船2法向反力云图 Fig. 19 The cloud chart of normal reaction on ship 2 by the submerged fender

 图 20 气液混合型护舷对船2法向反力云图 Fig. 20 The cloud chart of normal reaction on ship 2 by the hydro pneumatic fender

 图 21 与船2接触的潜没式护舷压缩量曲线 Fig. 21 Compression curve of the submerged fender contacted ship 2

 图 22 与船1接触的潜没式护舷压缩量曲线 Fig. 22 Compression curve of the submerged fender contacted ship 1

 图 23 气液混合型护舷压缩量曲线 Fig. 23 Compression curve of the hydro pneumatic fender

 图 24 潜没式护舷对船2法向反力云图 Fig. 24 The cloud chart of normal reaction on ship 2 by the submerged fender

 图 25 气液混合型护舷对船2法向反力云图 Fig. 25 The cloud chart of normal reaction on ship 2 by the hydro pneumatic fender

4 结　语

 [1] 朱珉虎. 船舶护舷的现状和发展趋势[J]. 中外船舶科技, 2018, 1: 16-24. ZHU Min-hu. Research situation and development tendency on ship fenders[J]. Shipbuilding Science and Technology, 2018, 1: 16-24. [2] 张新福, 赵珍强, 黄海波. 大型舰船海上靠泊用潜没式护舷设计[J]. 船舶工程, 2018, 40(S1): 174-175. ZHANG Xin-fu, ZHAO Zhen-qiang, HUANG Hai-bo. Design on submerged fenders for large ships berthing at sea[J]. The Ship Engineering, 2018, 40(S1): 174-175. [3] 赵珍强, 张海洋, 刘刚. 气液混合型靠泊护舷研究[J]. 船舶工程, 2011, 33(S2): 187-189. ZHAO Zhen-qiang, ZHANG Hai-yang, LIU Gang. Study on hydro pneumatic fender[J]. The Ship Engineering, 2011, 33(S2): 187-189. [4] 李雪冰, 危银涛. 一种改进的Yeoh超弹性材料本构模型[J]. 工程力学, 2016, 33(12): 38−43. LI Xue-bing, WEI Yin-tao. An improved Yeoh constitutive model for hyperelasticmaterial[J]. 2016,33(12): 38−43. [5] 李晓芳, 杨晓翔. 橡胶材料的超弹性体本构模型[J]. 弹性体, 2002, 15(1): 50-58. LI Xiao-feng, YANG Xiao-xiang. A review of elastic constitutive model for rubber materials[J]. China Elastomerics, 2002, 15(1): 50-58. [6] PUCCI E, SACCOMANDI G. A note on the gent ruber-like materials[J]. Rubber Chemistry and Technology, 2002, 5(5): 839-952. [7] YEOH O H. Characterization of elastic properties of carbon black-filled rubber vulcanizates[J]. Rubber Chemistry and Technology, 1990, 63(5): 792-805. DOI:10.5254/1.3538289 [8] 闫立平. 橡胶材料的大变形分析及有限元计算[D]. 北京: 北京交通大学, 2003.