﻿ 非运转设备对浮筏隔振效果影响研究
 舰船科学技术  2021, Vol. 43 Issue (7): 14-18    DOI: 10.3404/j.issn.1672-7649.2021.07.004 PDF

1. 海军装备部驻葫芦岛地区军事代表室，辽宁 葫芦岛 125004;
2. 武汉第二船舶设计研究所，湖北 武汉 430205

Research on the influence of non-operating equipment on the vibration isolation effect of raft isolation system
WANG Xin-hai1, Dai Rui-jie2, SHANG Chao2, QI Qiong-fang2, TAN Hai-tao2, CHEN Lin-xiong2
1. Navy Representative Office in Huludao Area, Huludao 125004, China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430205, China
Abstract: Firstly, the admittance equations of the structural parts (the operating equipment, the non-operating equipment, the raft frame and the base) and the impedance equations of the vibration absorbers (the damper) are established respectively for the typical floating raft isolation system. Secondly, the impedance admittance synthesis method is used to construct the three directional vibration transfer model of the floating raft isolation system with non-operating equipment. Finally, the influence of non-operating equipment on the vibration transfer characteristics of the floating raft is analyzed according to the test results of the comparative working conditions, which provides an idea for the fine design of the acoustic performance of the floating raft isolation system in ships.
Key words: equipment vibration isolation     raft     vibration-isolation effect     impedance synthesis
0 引　言

1 浮筏隔振系统动力学模型

 图 1 含非运转设备的典型浮筏隔振系统 Fig. 1 A typical floating raft isolation system with non-operating equipment
1.1 减振元件的阻抗方程

 图 2 减振器简化模型 Fig. 2 Simplified model of damper

 $\left[ {\begin{array}{*{20}{c}} {{ Z}_{11}^j}&{{ Z}_{12}^j} \\ {{ Z}_{21}^j}&{{ Z}_{22}^j} \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} {{ V}_j^s} \\ {{ V}_j^f} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{ F}_j^s} \\ { - { F}_j^f} \end{array}} \right]{\text{。}}$ (1)

 $\left[ {\begin{array}{*{20}{c}} {{ Z}_{11}^x}&{{ Z}_{12}^x} \\ {{ Z}_{21}^x}&{{ Z}_{22}^x} \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} {{ V}_x^f} \\ {{ V}_x^t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{ F}_x^f} \\ { - { F}_x^t} \end{array}} \right],$ (2)
 $\left[ {\begin{array}{*{20}{c}} {{ Z}_{11}^J}&{{ Z}_{12}^J} \\ {{ Z}_{21}^J}&{{ Z}_{22}^J} \end{array}} \right] \cdot \left[ {\begin{array}{*{20}{c}} {{ V}_J^s} \\ {{ V}_J^f} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{ F}_J^s} \\ { - { F}_J^f} \end{array}} \right]{\text{。}}$ (3)
1.2 结构件的导纳方程

 ${ Y}_{jj}^s{ F}_j^s = {{ V}_{0j}} - { V}_j^s{\text{，}}$ (4)

 ${ V}_{JJ}^s{ F}_J^s = - { V}_J^s{\text{。}}$ (5)

 $\left[ {\begin{array}{*{20}{c}} {{ Y}_{jj}^f}&{{ Y}_{jJ}^f}&{{ Y}_{jx}^f} \\ {{ Y}_{Jj}^f}&{{ Y}_{JJ}^f}&{{ Y}_{Jx}^f} \\ {{ Y}_{xj}^f}&{{ Y}_{xJ}^f}&{{ Y}_{xx}^f} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{ F}_j^f} \\ {{ F}_J^f} \\ { - { F}_x^f} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{ V}_j^f} \\ {{ V}_J^f} \\ {{ V}_x^f} \end{array}} \right]{\text{。}}$ (6)

 ${ Y}_{xx}^t{ F}_x^t = { V}_x^t{\text{。}}$ (7)
1.3 含非运转设备的浮筏隔振系统振动传递动力学模型

 $\left[ {\begin{array}{*{20}{c}} {{ I} + { Y}_{JJ}^s{ Z}_{11}^J}&0&{{ Y}_{JJ}^s{ Z}_{12}^J}&0&0 \\ {{ Y}_{jJ}^f{ Z}_{21}^J}&{{ I} + { Y}_{jj}^f{ Z}_{22}^j}&{{ Y}_{{\rm{j}}J}^f{ Z}_{22}^J}&{{ Y}_{jx}^f{ Z}_{11}^x}&{{ Y}_{jx}^f{ Z}_{12}^x} \\ {{ Y}_{JJ}^f{ Z}_{21}^J}&{{ Y}_{Jj}^f{ Z}_{22}^j}&{{ I} + { Y}_{JJ}^f{ Z}_{22}^J}&{{ Y}_{Jx}^f{ Z}_{11}^x}&{{ Y}_{Jx}^f{ Z}_{12}^x} \\ {{ Y}_{xJ}^f{ Z}_{21}^J}&{{ Y}_{xj}^f{ Z}_{22}^j}&{{ Y}_{xJ}^f{ Z}_{22}^J}&{{ I} + { Y}_{xx}^f{ Z}_{11}^x}&{{ Y}_{xx}^f{ Z}_{12}^x} \\ 0&0&0&{{ Y}_{xx}^t{ Z}_{21}^x}&{{ I} +{ Y}_{xx}^t{ Z}_{22}^x} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{ V}_J^s} \\ {{ V}_j^f} \\ {{ V}_J^f} \\ {{ V}_x^f} \\ {{ V}_x^t} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0 \\ { - { Y}_{jj}^f{ Z}_{21}^j{ V}_j^s} \\ { - { Y}_{Jj}^f{ Z}_{21}^j{ V}_j^s} \\ { - { Y}_{xj}^f{ Z}_{21}^j{ V}_j^s} \\ 0 \end{array}} \right]{\text{。}}$ (8)

2 验证试验 2.1 试验台架方案

 图 3 试验台架示意图 Fig. 3 Schematic diagram of test bench

2.2 试验结果分析

 图 4 水泵机脚振动响应（X向） Fig. 4 The vibration response of pump seat (X direction)

 图 5 水泵机脚振动响应（Y向） Fig. 5 The vibration response of pump seat(Y direction)

 图 6 水泵机脚振动响应（Z向） Fig. 6 The vibration response of pump seat(Z direction)

 图 7 基座振动响应（X向） Fig. 7 The vibration response of base structures(X direction)

 图 8 基座振动响应（Y向） Fig. 8 The vibration response of base structures(Y direction)

 图 9 基座振动响应（Z向） Fig. 9 The vibration response of base structures(Z direction)

 图 10 基座响应时频图（Y向） Fig. 10 Time-frequency image for vibration response of base structure (Y direction)

 图 11 基座响应时频图（Z向） Fig. 11 Time-frequency image for vibration response of base structure (Z direction)

 图 12 电机机脚振动响应（X向） Fig. 12 The vibration response of motor seat (X direction)

 图 13 电机机脚振动响应（Y向） Fig. 13 The vibration response of motor seat (Y direction)

 图 14 电机机脚振动响应（Z向） Fig. 14 The vibration response of motor seat (Z direction)
3 结　语

1）非运转设备对浮筏运转设备机脚振动的影响可忽略；

2）增装非运转设备可改变浮筏隔振系统原有的整体模态，对应的模态频率应避开各设备的运转频率；

3）将非运转设备与运转设备进行整体匹配隔振设计可提升隔振系统的声学性能；

4）当非运转设备的安装频率处于浮筏运转设备的共振频段内时，需校核其振动响应是否超过自身限值。

 [1] 余永丰, 庞天照, 关珊珊, 等. 大型浮筏隔振系统筏架耦合振动研究[J]. 噪声与振动控制, 2010(5): 56-59. DOI:10.3969/j.issn.1006-1355.2010.05.013 [2] 张树桢, 陈前. 浮筏隔振系统的非共振响应分析[J]. 振动工程学报, 2014, 27(3): 326-332. DOI:10.3969/j.issn.1004-4523.2014.03.003 [3] 李增光. 浮筏及双层隔振装置隔振性能计算与分析[J]. 噪声与振动控制, 2015(6): 65-68. [4] 孙红灵. 弹性基础隔振系统的简化性能指标和有源控制力[J]. 声学学报, 2016, 41(2): 227-235. [5] 杨明月. 分布参数双层隔振系统的主被动控制机理研究[D]. 济南: 山东大学, 2015. [6] 赵建学, 俞翔, 柴凯, 等. 双层隔振系统隔振性能分析[J]. 中国舰船研究, 2017(5): 56-59. [7] 温华兵, 昝浩, 陈宁, 等. 惯容器对隔振系统动态性能影响研究[J]. 实验力学, 2015, 30(4): 483-5490. DOI:10.7520/1001-4888-14-179 [8] 叶珍霞. 基座设计对隔振效果的影响分析与优化方法研究[J]. 舰船科学技术, 2019, 41(9): 48-51. DOI:10.3404/j.issn.1672-7649.2019.09.009 [9] 张森森, 商超, 戴俊, 等. 浮筏隔振系统三向振动传递特性研究[J]. 舰船科学技术, 2019, 41(11): 77-80. DOI:10.3404/j.issn.1672-7649.2019.11.015 [10] 原春晖. 机械设备振动源特性测试方法研究[D]. 武汉: 华中科技大学, 2006.