﻿ 基于阻力性能的高速双体船水动力构型优化
 舰船科学技术  2021, Vol. 43 Issue (7): 9-13    DOI: 10.3404/j.issn.1672-7649.2021.07.003 PDF

1. 宁波大学 海运学院，浙江 宁波 315211;
2. 中国船级社温州办事处，浙江 温州 330302

Hydrodynamic configuration optimization of high-speed catamaran based on resistance performance
YUAN Wen-xin1, DU Lin1, YU Qun1, CHEN Jing-hao2, LI Zhen-qi1, LI Guang-nian1
1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China;
2. China Classification Society Wenzhou Office, Wenzhou 330302, China
Abstract: The rapidity of ships is one of the key factors affecting the shipping economics. A catamaran is studied to design a resistance prediction and optimization plan and reduce its resistance successfully: using numerical simulation technology combined with Lackenby deformation method to transform the hull profile, and further optimizing the resistance performance by adjusting the spacing of the slices. The results show that the optimized ship possesses a good resistance performance. Compared with the parent ship, the total resistance coefficient can be reduced by 13% under the design condition, Fr=0.572. After the optimization of the hull separation, the total resistance coefficient is further significantly reduced. Based on the above results, the prediction method and optimization scheme proposed in this paper can be effectively used for the performance prediction and optimization design of high-speed catamarans and provide technical support for the related researches.
Key words: catamaran     resistance     hull form optimization     hull separation
0 引　言

1 数学模型 1.1 控制方程

 $\frac{{\partial {u_i}}}{{\partial {x_i}}} = 0 {\text，}$ (1)
 $\rho \frac{{\partial {u_i}}}{{\partial t}} + \rho {u_j}\frac{{\partial {u_i}}}{{\partial {x_j}}} = - \frac{{\partial p}}{{\partial {x_j}}} + \mu \frac{\partial }{{\partial {x_j}}}\left(\frac{{\partial {u_i}}}{{\partial {x_j}}}\right) + {f_i}{\text。}$ (2)

1.2 湍流模型

 ${v_t} = \frac{k}{\omega }{\text，}$ (3)
 $\frac{{\partial k}}{{\partial t}} + \left({U_j} - {\sigma _k}\frac{{\partial {v_t}}}{{\partial {x_j}}}\right)\frac{{\partial k}}{{\partial {x_j}}} - \frac{1}{{{R_k}}}{\nabla ^2}k + {s_k} = 0 {\text，}$ (4)
 $\frac{{\partial \omega }}{{\partial t}} + \left({U_j} - {\sigma _\omega }\frac{{\partial {v_t}}}{{\partial {x_j}}}\right)\frac{{\partial \omega }}{{\partial {x_j}}} - \frac{1}{{{R_k}}}{\nabla ^2}\omega + {s_\omega } = 0 {\text。}$ (5)

1.3 双体船阻力计算

 ${R_t} = {R_f} + {R_r} + {R_\xi } = {R_f} + {R_r} + {R_{w1 \leftrightarrow 2}} + \Delta {R_v}{\text{。}}$ (6)

 ${C_t} = {\rm{(1}} + \alpha k{\rm{)}}{C_f} + {C_{w1}} + {C_{w2}} + {C_{w1 \leftrightarrow 2}}{\text{。}}$ (7)

 ${C_f} = \frac{{0.075}}{{{{({\rm{lg}}Re - 2)}^2}}}{\text{。}}$ (8)

Couser等[9]给出了双体船形状修正因子计算公式如下：

 ${\rm{1}} + ak = 3.03{(L/{D^{1/3}})^{ - 0.4}}{\text，}$ (9)

 ${R_v} = 0.5(1 + \alpha k)\rho {v^2}s{C_f}{\text。}$ (10)

2 双体船船型优化 2.1 船型

 图 1 某双体船船体几何形状 Fig. 1 The hull geometry of a catamaran

 图 2 优化前后型线对比 Fig. 2 Optimal hull of profile before and after

2.2 数值计算 2.2.1 计算域与边界条件

 图 3 计算域尺寸（俯视） Fig. 3 The size of domain（plan view）

 图 4 计算域尺寸（主视） Fig. 4 The size of domain（front view）
2.2.2 空间离散网格

 图 5 自由液面处网格 Fig. 5 Grid at free surface

 图 6 船身网格 Fig. 6 Grid on hull
2.2.3 计算结果

 图 7 优化前后波形对比图 Fig. 7 The waveforms before and after optimization
3 双体船片体间距优化

 图 8 不同λ下的Cr、Ct Fig. 8 Cr and Ct under different λ

 图 9 不同λ下的波形图 Fig. 9 The waveforms under different λ
4 结　语

1）以该高速双体船为例，在保证一定排水量变化范围内，通过Lakenby法使浮心纵向位置相对于船舯后移，变形后的船体艏部相对瘦小，使得船体阻力减小。在设计航速v=20 kn（Fr=0.572）下，剩余阻力系数减小约13%，总阻力系数减小12%。

2）在优化船型的基础之上，进一步优化片体间距，在设计工况下双体船剩余阻力的随片体间距变化趋势与总阻力变化趋势基本一致，存在最佳片体间距比使得船体阻力达到最优值。仅从阻力性能角度出发，该双体船片体间距比λ=1.4时阻力性能最优，与型线优化后的船型相比，CrCt分别降低了3.23%，3.30%。

 [1] 王骏. 高性能船舶研究现状及发展趋势[J]. 船舶物资与市场, 2020(8): 7-9. WANG J. Research status and development trend of high performance ship[J]. Marine Equipment/Materials & Marketing, 2020(8): 7-9. [2] 邓芳, 邓魏彬. 双体船阻力性能计算及船型设计优化[J]. 青岛科技大学学报(自然科学版), 2015, 36(1): 72-76. DENG F, DENG W B. Resistance calculation and hull design and optimization of catamaran[J]. Journal of Qingdao University of Science and Technology(Natural Science Edition), 2015, 36(1): 72-76. [3] MORAES H B, VASCONCELLOS J M, LATORRE R G. Wave resistance for high-speed catamarans[J]. Ocean Engineering, 2004, 31: 2253-2282. DOI:10.1016/j.oceaneng.2004.03.012 [4] 杜友威, 李彪, 周新院. 基于阻力分析的穿浪双体船船型设计及优化[J]. 舰船科学技术, 2019, 41(13): 31-34+44. DU Y W, LI B, ZHOU X Y. Ship design and optimization of wave-piercing catamaran based on resistance performance analysis[J]. Ship Science and Technology, 2019, 41(13): 31-34+44. [5] 陈京普, 朱德祥, 何术龙. 双体船/三体船兴波阻力数值预报方法研究[J]. 船舶力学, 2006(2): 23-29. CHEN J P, ZHU D X, HE S L. Research on numerical prediction method for wave-making resistance of catamaran/trimaran[J]. Journal of Ship Mechanics, 2006(2): 23-29. DOI:10.3969/j.issn.1007-7294.2006.02.004 [6] 李广年, 赵连恩, 陈庆任, 等. 非对称双体船兴波问题与侧体布局优化分析[J]. 中国造船, 2013, 54(4): 55-62. LI G N, ZHAO L E, CHEN Q R, et al. Wave-making problem and optimal solution of piece hull arrangement for asymmetric catamaran[J]. Shipbuilding of China, 2013, 54(4): 55-62. DOI:10.3969/j.issn.1000-4882.2013.04.007 [7] LI H J, PUTR A A M F, SUN K, et al. Boat trial validation and resistance prediction of a 36-foot hydrofoil catamarans using CFD[J]. Journal of Ship Mechanics, 2020, 24(6): 740-753. [8] 马健, 张再夫, 李惠敏. 穿浪双体船剩余阻力影响因素分析及总阻力预报方法[J]. 船舶力学, 2011, 15(Z1): 32-39. MA J, ZHANG Z F, LI H M. Influencing factors of residual resistance and a prediction method of total resistance about wave-piercing catamaran[J]. Journal of Ship Mechanics, 2011, 15(Z1): 32-39. [9] COUSER P, WELLICOME J F, MOLLAND A F. An improved method for the theoretical prediction of the wave resistance of transom-stern hulls a slender body approach[J]. International Shipbuilding Progress, 1998, 45(444): 1-18. [10] 王硕, 苏玉民, 庞永杰, 等. 高速滑行艇CFD精度研究[J]. 船舶力学, 2013, 17(10): 1107-1114. WANG S, SU Y M, PANG Y J, et al. Study on the accuracy in the hydrodynamic prediction of high-speed planning crafts of CFD method[J]. Journal of Ship Mechanics, 2013, 17(10): 1107-1114. DOI:10.3969/j.issn.1007-7294.2013.10.002