﻿ 高射速自动机气液式缓冲装置仿真分析
 舰船科学技术  2021, Vol. 43 Issue (3): 186-189    DOI: 10.3404/j.issn.1672-7649.2021.03.036 PDF

Simulation of the Gas-liquid buffer device for High-speed automatic gun
XU Ya-kai, YANG Hong-liang, YIn Peng-xian, CHEN Lei
The 713 Research Institute of CSSC, Zhengzhou 450015, China
Abstract: The recoil systems of spring type are used in a wide range of existing small caliber weapons because of the advantages of simple structure. However, the recoil is larger than other types. To reduce the recoil further, a recoil system of gas-liquid type is studied in this paper. Numerical simulated program of recoil motion is designed. The simulation results indicate that the recoil reduced 39% used gas-liquid mechanism compared with the spring mechanism under the similar recoil displacement. The fluid simulation is conducted. The error values of numerical and fluid simulation are within 10%, which further validates the simulation results.
Key words: recoil     gas-liquid     spring     numerical simulation     fluid simulation
0 引　言

1 工作原理

 图 1 气液缓冲装置结构示意图 Fig. 1 Structural representation of the gas-liquid buffer device
2 运动方程

 ${m_h}\frac{{{{\rm d}^2}x}}{{{\rm d}{t^2}}} = {F_{pt}} - {F_R}\text{。}$ (1)

 ${F_R} = {F_q} + {F_s} + {F_f}\text{。}$ (2)

 ${P_q} = {P_{q0}}{\left( {\frac{{{W_{q0}}}}{{{W_{q0}} - {A_h}L}}} \right)^n}\text{。}$ (3)

 ${F_s} = R{v_h}^2\text{，}$ (4)

 ${F_{pt}} = \left\{ \begin{gathered} \frac{1}{\varphi }\left( {1 + \frac{1}{2}\frac{\omega }{m}} \right)Ap\text{，}\quad \left( {0 \leqslant t < {t_g}} \right) \text{，} \\ \frac{1}{\varphi }\left( {{\varphi _1} + \frac{1}{2}\frac{\omega }{m}} \right)A{p_g}\text{，}\quad \;\left( {t = {t_g}} \right) \text{，} \\ {F_g}{e^{ - \frac{{t - {t_g}}}{b}}}\text{，}\quad \quad \quad \quad \left( {{t_g} < t \leqslant {t_k}} \right) \text{，} \\ 0\text{，}\quad \quad \quad \quad \quad \quad \quad \quad \;\left( {t > {t_k}} \right) \text{。} \\ \end{gathered} \right.$ (5)

3 数值仿真计算

 $\left\{\begin{array}{l}y_{i(m+1)}=\\ y_{i m}+\dfrac{h}{6}\left(k_{i 1}+k_{i 2}+k_{i 3}+k_{i 4}\right), (i=1,2, \cdots, n ; m=0,1,2 \cdots)\text{，} \\ k_{i 1}=f_{i}\left(t_{m}, y_{1 m}, y_{2 m}, \cdots, y_{r n}\right)\text{，} \\ k_{i 2}=f_{i}\left(t_{m}+\dfrac{h}{2}, y_{1 m}+\dfrac{h}{2} k_{12}, y_{2 m}+\dfrac{h}{2} k_{22}, \cdots, y_{n m}+\dfrac{h}{2} k_{n 2}\right)\text{，} \\ k_{i 3}=f_{i}\left(t_{m}+\dfrac{h}{2}, y_{1 m}+\dfrac{h}{2} k_{12}, y_{2 m}+\dfrac{h}{2} k_{22}, \cdots, y_{n m}+\dfrac{h}{2} k_{n 2}\right)\text{，} \\ k_{i 4}=f_{i}\left(t_{m}+h, y_{1 m}+h k_{13}, y_{2 m}+h k_{23}, \cdots, y_{r n n}+h k_{n 3}\right)\text{。}\end{array}\right.$ (6)

1）弹簧式缓冲器数值仿真

 图 2 弹簧缓冲器后坐位移变化曲线 Fig. 2 The variation curve of the recoil displacement with time for spring buffer device

 图 3 弹簧缓冲器后坐力变化曲线 Fig. 3 The variation curve of the recoil force with time for spring buffer device

2）气液式缓冲器数值仿真

 图 4 气液缓冲器后坐速度随时间变化曲线 Fig. 4 The variation curve of the recoil speed with time for gas-liquid buffer device by numerical simulation

 图 5 气液缓冲器后坐位移随时间变化曲线 Fig. 5 The variation curve of the recoil displacement with time for gas-liquid buffer device by numerical simulation

 图 6 气液缓冲器后坐力随时间变化曲线 Fig. 6 The variation curve of the recoil force with time for gas-liquid buffer device by numerical simulation

4 流体仿真

 图 7 气液缓冲器流场模型图 Fig. 7 The flow field model of gas-liquid buffer device

 图 8 气液缓冲器一个发射周期内压力云图 Fig. 8 The variation of pressure for gas-liquid buffer device in a cycle

 图 9 气液缓冲器后坐速度变化曲线 Fig. 9 The variation curve of the recoil speed with time for gas-liquid buffer device by fluid simulation

 图 11 气液缓冲器后坐力变化曲线 Fig. 11 The variation curve of the recoil force with time for gas-liquid buffer device by fluid simulation

 图 10 气液缓冲器后坐位移变化曲线 Fig. 10 The variation curve of the recoil displacement with time for gas-liquid buffer device by fluid simulation

5 结　语

 [1] 戴劲松, 王文中, 张月林. 小口径自动炮FORC原理[J]. 南京理工大学学报, 1997, 21(6): 9-12. DAI Jin-song, WANG Wen-zhong, ZHANG Yue-lin. The FORC principle of small bore cannon[J]. Journal of Nanjing University of Science and Technology, 1997, 21(6): 9-12. [2] 黄君政, 戴劲松. 三种缓冲装置减小后坐力的分析和比较[J]. 弹道学报, 2006, 18(2): 40-43. HUANG Jun-zheng, DAI Jin-song. Comparison of decreasing recoil force using three buffers[J]. Journal of Ballistics, 2006, 18(2): 40-43. DOI:10.3969/j.issn.1004-499X.2006.02.010 [3] 豆征, 朋科, 睿远, 等. 自动机缓冲器特性与动强度研究[J]. 江苏科技大学学报(自然科学版), 2013, 27(139): 54-58. DOU Zheng, LIU Peng-ke, LI Rui-yuan, et al. Research on buffer character and dynamic strength of gatling automata[J]. Journal of Jiangsu University of Science and Technology(Natural Science Edition), 2013, 27(139): 54-58. [4] 戴劲松, 刘振, 王茂森, 等. 高频冲击作用下高阻尼气液缓冲装置动态仿真[J]. 火炮发射与控制学报, 2012(125): 24-27. DAI Jin-song, LIU Zhen, WANG Mao-sen, et al. The dynamic simulation for high damping factor pneumatic-hydraulic precision buffer under the effect of high frequency shocks[J]. Journal of Gun Launch & Control, 2012(125): 24-27. [5] 刘振, 戴劲松, 王茂森, 等. 高射速自动机后坐力控制[J]. 火炮发射与控制学报, 2011(122): 3-6. LIU Zhen, DAI Jin-song, WANG Mao-sen, et al. The controlling for the recoil force of high firing rate automatic gun[J]. Journal of Gun Launch & Control, 2011(122): 3-6.