﻿ 鱼雷发动机三组元比例控制器数值模拟
 舰船科学技术  2021, Vol. 43 Issue (3): 179-185    DOI: 10.3404/j.issn.1672-7649.2021.03.035 PDF

Numerical simulation of tri-proportion controller
MENG Rui, YI Yin, HAN Xin-bo, YI Jin-bao, BAI Kun-xue, LI Yong-dong
The 705 Research Institute of CSSC, Xi′an 710077, China
Abstract: The internal flow field of the Tri-proportion controller in the torpedo engine was simulated by the computational fluid dynamics software Pumplinx. Analyzed the influence of different pressure differential in the calculation on the performance of the tri-proportion controller, and the effect of the gap between the blade and the stator on the tri-proportion controller, simultaneously compared the performance under different blade numbers. The calculations prove that: because the Tri-proportion controller is a passive rotating motor structure, Its speed and flow rate are cyclically pulsating over time. As the working pressure difference increases, the speed pulsation amplitude remains basically unchanged, while the flow and torque pulsation amplitude increases. As the gap increases, the leakage increases, but the pulsation of flow, torque and speed are greatly reduced. The outlet flow is relatively stable; the speed and displacement of the proportional controller decrease when the number of blades increases.It is inferred from the calculation results that the optimal number of blades in current tri-proportion controller is four. The study in this article can provide reference for further research on the accuracy of Tri-proportion controller.
Key words: tri-proportion controller     flow pulsation     transient simulation     gap     rotate speed
0 引　言

1 流量理论分析

 图 1 比例控制器运动计量原理 Fig. 1 Motion measurement of Tri-proportion controller

 $\mathop s\nolimits_1 \approx \frac{1}{2}\left[ {{\rho ^2}\left( \theta \right) - {r^2}} \right]{\rm{d}}\theta \text{，}$ (1)
 $\mathop s\nolimits_2 \approx \frac{1}{2}\left[ {{\rho ^2}\left( {{\theta _2}} \right) - {r^2}} \right]{\rm{d}}\theta \text{，}$ (2)

 图 2 $\rho$ 与R的关系 Fig. 2 Relationship between $\rho$ and R
 $\rho (\theta ) \approx e\cos \theta + \sqrt {{R^2} - {e^2}{{\sin }^2}\theta } \text{，}$ (3)

${\theta _2} = \theta + \text{π}$ 代入得瞬时流量为：

 $\begin{split} {Q_{ir}}{\rm{ }} = &\frac{{{\rm{d}}V}}{{{\rm{d}}t}} = \frac{1}{2}B\omega \left[ {{\rho ^2}\left( \theta \right) - {\rho ^2}\left( {{\theta _2}} \right)} \right] =\\ & \frac{1}{2}B\omega {R^2} \cdot 4\frac{e}{R}\cos \theta = \\ & {{ 2}}eBR\omega \cos \theta \text{。} \\ \end{split}$ (4)

 $\begin{split} & {({Q_{ir}})_{\max }} = 2eBR\omega \text{，} \\ & {({Q_{ir}})_{\min }} = 2eBR\omega \cos \frac{\text{π} }{4} \text{。} \end{split}$ (5)

2 湍流模型和数值方法 2.1 湍流模型

2.2 数值方法

Pumplinx中采用有限体积法对划分的非结构化网格进行求解，对于控制方程的离散求解，在时间空间上采用2阶迎风格式，选择SIMPLEC (Semi–implicit method for pressure-linked equation Consistent)算法求解离散方程，由于计算不涉及空化模型，故收敛速度相对较快。

3 流体模型及网格划分 3.1 研究对象流体域提取

 图 3 燃料路流体域提取 Fig. 3 Fuel circuit fluid domain

3.2 网格划分

 图 4 计算域网格划分 Fig. 4 Computational domain meshing
3.3 从动旋转设置

 $I\frac{{{\rm{d}}{}^2\theta }}{{{\rm{d}}{t^2}}} = {\tau _{hydrodynamic}} - {\tau _{damping}} + {\tau _{additional}} + {\tau _{friction}}\text{，}$ (6)

 ${\tau _{hydrodynamic}} = \Sigma {\tau _{pressure}} + \Sigma {\tau _{shear}}\text{，}$
 ${\tau _{damping}} = {D_\tau } \cdot \omega \text{，}$
 ${\tau _{friction}} = \mu \cdot N\text{。}$

4 计算结果分析 4.1 阻尼系数设定

 图 5 仿真与实验数据对比 Fig. 5 Comparison of simulation and experimental data
4.2 比例控制器仿真结果分析 4.2.1 压差对比例控制器影响分析

 图 6 不同压差下转速随时间变化曲线 Fig. 6 Rotation speed change curve with time under different pressure

 图 7 不同压差下流量随时间变化曲线 Fig. 7 Flux change curve with time under different pressure

 图 8 不同压差下扭矩随时间变化情况 Fig. 8 Torque curve with time under different pressure
4.2.2 不同径向间隙对比例控制器影响分析

 图 9 不同间隙下转速随时间变化曲线 Fig. 9 Rotation speed change curve with time under different gaps

 图 10 不同间隙下转速随时间变化曲线 Fig. 10 Flux change curve with time under different gaps

 图 11 不同间隙下扭矩随时间变化曲线 Fig. 11 Torque curve with time under different gaps

4.2.3 叶片数目对于比例控制器影响分析

 图 12 不同叶片数目下转速随时间变化曲线 Fig. 12 Rotation speed with time under different number of blades

 图 13 不同叶片数目下流量随时间变化曲线 Fig. 13 Flux change curve with time under different number of blades
5 结　语

1)比例控制器转速和流量均随时间呈脉动变化情况。随着压差增大，转速脉动情况基本不变，流量与扭矩脉动幅值增加，且随着压差增大，比例控制器容积效率降低，泄漏增加。

2)间隙对于比例控制器启动有影响巨大，过小间隙由于闭死腔室内流体介质的无法流动而影响启动。间隙越小，比例控制器流量和转速、叶片所受扭矩脉动幅值越大，间隙增大后比例控制器转速提升，流量、扭矩、转速脉动情况大幅降低，但泄漏量增加。

3)叶片数目为偶数时比例控制器流量、转速脉动情况明显好于叶片数目为奇数时，同时叶片数目增多会占据腔室内一定容积，转速降低，导致排量降低。目前最优叶片数目为4。

 [1] 查志武, 史小峰. 鱼雷热动力技术[M]. 北京: 国防工业出版社, 2006. [2] 李代金, 党建军, 等. 三组元比例控制器的端面间隙控制及内泄漏分析[J]. 水动力学研究与进展, 2009(1): 113-118. [3] DinhQuang TRUONG, Kyoung KWAN AHN. Performance analysis of a variable-displacement vane-type oil pump for engine lubrication using a complete mathematical model[J]. Automobile Engineering, 2013, 227(10): 414-430. [4] OSBORNE G. F., MBE.. The Spearfish Propulsion System.[J]. GRC REVIEW, 1998, 13(3): 50-162. [5] 张群峰, 闫盼盼. 航空发动机滑片泵数值模拟[J]. 航空动力学报, 2014(11): 2537-2542. [6] INAGUMA O., NAKAMURA K... Influence of leakage flow variation on delivery pressure ripple in a vane pump[J]. Mechanical Engineering Science, 2014, 228(2): 342-357. DOI:10.1177/0954406213484669 [7] 黎克英, 陆祥生. 叶片式液压泵和马达[M]. 北京: 机械工业出版社, 1993.