﻿ 基于PumpLinx的鱼雷齿轮泵内部流场及流量特性的仿真分析
 舰船科学技术  2021, Vol. 43 Issue (3): 56-59    DOI: 10.3404/j.issn.1672-7649.2021.03.012 PDF

1. 中国船舶集团有限公司第七〇五研究所，陕西 西安 710077;
2. 山西平阳重工机械有限责任公司，山西 侯马 043002

Numerical simulations of internal flow field and mass flow characteristic of gear pumps in torpedo based on PumpLinx
BAI Kun-xue1, MA Xiao-lu1, LI Yong-dong1, ZHANG Hai-ying1, YANG Yu-jing2
1. The 705 Research Institute of CSSC, Xi′an 710077, China;
2. Shanxi Pingyang Machinery Factory, Houma 043002, China
Abstract: To study the influences of rotational speed and fluid materials on the gear pump performance, the internal flow field and mass flow of the gear pump are simulated by using PumpLinx. The numerical results are compared with the experimental data, then the influences of rotational speed and fluid materials on the flow field and output characteristics of the gear pump are analyzed. The numerical results show that the time-averaged mass flow is agreed with the experimental data, and inlet mass flow fluctuates with time in a saw-tooth pattern, while outlet mass flow slightly fluctuates with time in a wavy pattern, and the mass flow fluctuations are decreased with the increase of rotational speed. Moreover, the pressure distribution in the gear pump appears like a ladder from the low pressure chamber to the high pressure chamber, and the inlet is prone to cavitation due to the low pressure, resulting in the higher pressure fluctuation. In addition, the mass flow fluctuation of the water is slightly lower than that of the oil. The research provides theoretical guidance for reducing the vibration and noise of the gear pump.
Key words: gear pump     torpedo     mass flow fluctuation     cavitation
0 引　言

1 控制方程与数值方法

 $\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho \overline{u_{j}}\right)}{\partial x_{j}}=0\text{,}$ (1)
 $\rho \frac{\partial \overline{u_{i}}}{\partial t}+\rho \overline{u_{j}} \frac{\partial \overline{u_{i}}}{\partial x_{j}}=\rho f_{i}-\frac{\partial \bar{p}}{\partial x_{i}}+\mu \frac{\partial^{2} \overline{u_{i}}}{\partial x_{j} \partial x_{j}}-\rho \frac{\partial \overline{u_{i}^{\prime} u_{j}^{\prime}}}{\partial x_{j}}\text{,}$ (2)

 $\rho \frac{{\rm D} k}{{\rm D} t}=\frac{\partial}{\partial x_{j}}\left(\alpha_{k} u_{e f f} \frac{\partial_{k}}{\partial x_{j}}\right)+2 u_{t} \overline{S_{i j}} \frac{\partial \overline{u_{i}}}{\partial x_{j}}-\rho \varepsilon\text{,}$ (3)
 $\rho \frac{{\rm D} \varepsilon}{{\rm D} t}=\frac{\partial}{\partial x_{j}}\left(\alpha_{\varepsilon} u_{e f f} \frac{\partial_{\varepsilon}}{\partial x_{j}}\right)+2 C_{1 \varepsilon} \frac{\varepsilon}{k} v_{t} \overline{S_{i j}} \frac{\partial \overline{u_{i}}}{\partial x_{j}}-C_{2 \varepsilon} \rho \frac{\varepsilon^{2}}{k}-R \text{。}$ (4)

2 物理模型与边界条件

 图 1 物理模型 Fig. 1 Physical model

 图 2 监测点位置示意图 Fig. 2 Schematic diagram of monitoring point location
3 结果与讨论 3.1 数值方法验证

 图 3 齿轮泵出口平均流量仿真结果与试验数据对比 Fig. 3 Comparison of numerical and experimental average flow of gear pump outlet
3.2 齿轮泵流量特性分析

 图 4 工况5条件下齿轮泵的入口与出口流量 Fig. 4 The inlet flow and outlet flow of gear pump in working condition 5

 图 5 齿轮泵入口与出口流量脉动率对比 Fig. 5 Comparison of inlet and outlet flow fluctuation of gear pump
3.3 齿轮泵内部压力场分析

 图 6 工况5条件下齿轮泵内部的压力云图 Fig. 6 Pressure contour inside gear pump under working condition 5

 图 7 齿轮泵入口与出口压力随时间的变化 Fig. 7 Variety of pressure in inlet and outlet of gear pump with time
3.4 流体介质对流量特性的影响

 图 8 不同流体介质时齿轮泵的流量脉动率 Fig. 8 The flow fluctuation of gear pump under different fluid materials
4 结　语

1）在仿真转速范围内，齿轮泵的流量脉动率随着转速的升高而降低，而且齿轮泵入口的流量脉动率约为25.8%～34.1%，而出口的流量脉动率显著降至16.1%～26.7%，这可能是由齿轮泵入口处困油容积由小变大而形成的超低压力甚至空化现象导致的。

2）鱼雷齿轮泵内部压力从低压腔向高压腔呈阶梯状过渡，最高压力产生于齿轮初始啮合位置，而最低压力产生于齿轮啮合分离位置，约为−0.13 MPa，极易出现空化现象。

3）齿轮泵出口的压力呈锯齿状剧烈波动，脉动率约为15.2%，而入口的压力脉动较为平缓，脉动率降至了9.4%。

4）流体介质为海水时齿轮泵的流量脉动率低于液压油，这可能是由于海水的粘度远低于液压油，使得齿轮泵内部的流动性增强。

 [1] 甘工昌. 鱼雷热动力系统中流体和气动噪声的产生及其控制[J]. 鱼雷技术, 2005, 13(4): 29-32. [2] VACCA A, GUIDETTI M. Modelling and experimental validation of external spur gear machines for fluid power applications[J]. Simulation Modelling Practice& Theory, 2011, 19(9): 2007-2031. [3] YOUNGMAN J, PRESS A. Visualisation research of the flow processes in the outlet chamber–outlet bridge–inlet chamber zone of the gear pumps[J]. Archives of Civil & Mechanical Engineering, 2015, 15(1): 95-108. [4] 孔繁余, 何玉洋, 郑德. 外啮合齿轮泵流量特性影响因素分析[J]. 排灌机械工程学报, 2014(2): 108-112. DOI:10.3969/j.issn.1674-8530.12.0223 [5] 吴玲, 谷立臣. 基于Fluent的外啮合齿轮泵内流场分析[J]. 煤矿机械, 2015(10): 145-147. [6] 段志善, 田庆飞, 郭宝良. 流体介质对齿轮泵内部流场影响的仿真分析[J]. 机械设计与制造, 2019, 6: 132-135. DOI:10.3969/j.issn.1001-3997.2019.06.033 [7] 李玉龙. 基于低速困油模型的外啮合齿轮泵高速困油特性分析[J]. 农业工程学报, 2012, 28(9): 35-39. [8] 赵斌, 何焱泳, 郭伟伟, 等. 新型变排量外啮合齿轮泵流量特性研究[J]. 机械工程学报, 2019, 55(24): 227-235. [9] 文昌明, 张宸赫, 李玉龙. 基于Pumplinx的齿轮泵内部流场仿真[J]. 成都大学学报(自然科学版), 2018, 37(3): 307-312. DOI:10.3969/j.issn.1004-5422.2018.03.019 [10] 王玉川, 谭磊, 曹树良, 等. 离心泵叶轮区瞬态流动及其压力脉动特性[J]. 机械工程学报, 2014, 50(10): 163-169. [11] YAKHOT V, ORSZAG S, THANGAM S, et al. Development of turbulence models for shear flows by a double expansion technique[J]. Physics of Fluids, 1992, 4(7): 1510-1520. DOI:10.1063/1.858424