﻿ 基于Ls-dyna的船舶与码头碰撞动力特性仿真分析
 舰船科学技术  2021, Vol. 43 Issue (3): 29-32    DOI: 10.3404/j.issn.1672-7649.2021.03.006 PDF

1. 重庆交通大学 航运与船舶工程学院;
2. 河海学院;
3. 建筑与城市规划学院，重庆 400074

Simulation analysis of dynamic characteristics of collision between ship and dock based on LS-DYNA
YUAN Pei-yin1, ZHAO Yu2,3, LEI Lin1, QIN Huai-tao1, ZHOU Chuang1, LI Dong-ying1
1. College of River and Ocean Engineering;
2. College of Shipping and Marine Engineering;
3. College of Architecture and Urban Planning, Chongqing Jiaotong University, Chongqing 400074, China
Abstract: In this paper, the nonlinear explicit finite element method is adopted to analyze the whole process of ship-to-dock collision, to explore the impact law of collision position on ship's dynamic characteristics, to reveal the damage of hull components during ship-to-dock collision, and to predict the time-history variation law of collision force and variable performance. The research show that when the ship and the dock meet at the head and stern of the ship, the main stress components and stress characteristics of the ship are obviously different. And the stress distribution of the main stressed components is characterized by small distribution area, long maintenance time and large stress value, the stress distribution characteristics of secondary stressed members are as follows: large distribution area, short maintenance time, small stress value, depression of ship and movement of hull plate during collision between ship and wharf which enough attention should be paid in practical projects.
Key words: ship     pier     collision     dynamic response     numerical simulation     collision force
0 引　言

1 船舶-码头碰撞能量守恒原理

 $\frac{{{\rm d}E}}{{{\rm d}t}} = V{S_{ij}}\frac{{{\rm d}{\varepsilon _{ij}}}}{{{\rm d}t}} - (p + q)\frac{{{\rm d}V}}{{{\rm d}t}}\text{，}$ (1)
 ${S_{ij}} = {\sigma _{ij}} + (p + q){\delta _{ij}}\text{，}$ (2)
 $p = - \frac{1}{2}{\sigma _{ij}}{\delta _{ij}} - q = - \frac{1}{3}{\sigma _{kk}} - q\text{。}$ (3)

 ${\delta _{ij}} = \left\{ \begin{gathered} 1,\;\;\;\;\;i = j, \\ 0,\;\;\;\;\;i \ne j \text{。} \\ \end{gathered} \right.$ (4)
2 数值验证与分析 2.1 建立有限元模型

 图 1 全船有限元模型 Fig. 1 Finite element model of ship

2.2 船舶与码头碰撞的动力特性研究

1）船舶与码头首碰的动力特性研究

 图 2 不同时刻船首外板等效应力云图 Fig. 2 Stress cloud diagram of the bow plate at different time

 图 3 碰撞力时程曲线 Fig. 3 Time history curve of collision force

 图 4 船首各构件变形能时程曲线 Fig. 4 Deformation energy time history curve of the bow

2）船与码头尾碰的动力特性研究

 图 5 碰撞力时程曲线 Fig. 5 Time history curve of collision force

 图 6 船尾各构件变形能时程曲线 Fig. 6 Deformation energy time history curve of the stern
3 结　语

1）船舶与码头发生首碰时，应力主要分布在船首，货舱段及船尾未出现明显应力分布，碰撞过程中主要受力构件为船首外板及船首骨架。

2）船舶与码头发生相互碰撞时，主要受力构件和次要受力构件的动力响应存在较大差异，主要受力构件的应力分布特点是分布面积小，维持时间长，应力数值大；次要受力构件的应力分布特点是分布面积大，维持时间较短，应力数值小。但是，由于应力集中部分的作用，次要构件也达到较大的应力。

3）船舶与码头发生首碰时，球鼻首前端会发生凹陷，若不修复则会影响船舶的阻力性能，碰撞过程中，首部外板及骨架会发生变形，可能会对附近的人员、设备等造成伤害，实际工程中应该给予足够的重视。

 [1] 候建. 全船有限元强度分析及碰撞仿真[D]. 大连: 大连理工大学, 2012. [2] 郭君. 船舶碰撞过程中带板梁结构剪切破坏机理初探[J]. 振动与冲击, 2011, 30(8): 61-66. DOI:10.3969/j.issn.1000-3835.2011.08.012 [3] 赵南, 刘俊杰, 李政杰, 胡嘉骏. 补给作业船舷侧碰撞损伤环境研究[J]. 船舶力学, 2015, 19(8): 950-957. DOI:10.3969/j.issn.1007-7294.2015.08.009 [4] 李良伟, 杜俭业. 船舶模型水池碰撞试验研究[J]. 舰船科学技术, 2018, 40(23): 64-67. [5] 胡志强, 崔维成. 船舶碰撞机理与耐撞性结构设计研究综述[J]. 船舶力学, 2005(2): 131-142. DOI:10.3969/j.issn.1007-7294.2005.02.019 [6] MINORSKY V U. Analysis of ship collision with reference to protection of nuclear power ships[J]. Journal of Ship Research, 1959, 3(2). [7] KITAMURA O. FEM approach to the simulation of collision and grounding damage[J]. Marine Structures, 2002, 15(5): 403-428. [8] BROWN A J. Collision scenarios and probabilistic collision damage[J]. Ocean Engineering International, 2002, 15(4): 335-364. [9] BROWN A J. Probabilistic method for prediction ship collision damage[J]. Ocean Engineering International, 2002, 6: 54-55. [10] CONSOLAZIO G R. Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design[J]. Computer & Structure, 2003(81): 547-557. [11] 白金泽. LS-DYNA理论基础与实例分析[M]. 北京: 科学出版社, 2005. [12] 赵海鸥. LS-DYNA动力分析指南[M]. 北京: 兵器工业出版社, 2003. [13] 张娅. 船舶碰撞过程中的附加质量研究[D]. 武汉: 武汉理工大学, 2016. [14] 武橦. 基于LS-DYNA的船舶-冰层碰撞数值研究[D]. 大连: 大连理工大学, 2018. [15] 袁培银, 刘俊良, 雷林, 等. 船舶与海洋平台碰撞的动力响应研究[J]. 舰船科学技术, 2018, 40(3): 27-32.