﻿ 基于混合势场法的无人潜航器路径规划及编队方法研究
 舰船科学技术  2020, Vol. 42 Issue (12): 97-100    DOI: 10.3404/j.issn.1672-7649.2020.12.019 PDF

Research on path planning and obstacle avoidance method of underwater unmanned vehicle based on hybrid potential field method
WANG Jian, ZHANG Hua, XU Ling-ling, CAO Yuan-shan, CHEN Wei, GU Yuan-yuan
Chian Ship Scientific Research Center, Wuxi 214082, China
Abstract: Aiming at the problems of obstacle avoidance, heading keeping, path tracking, multi-parameter control and under-actuation in the process of UUV operation application, a hybrid potential field on path planning and obstacle avoidance method is proposed. Based on the concept of virtual force, the submarine obstacle avoidance algorithm and the path tracking algorithm are mixed and merged into a unified generalized potential field architecture. This method unifies the multi-degree-of-freedom driving problems such as obstacle avoidance, heading maintaining, and path tracking, and presents it in the form of a single output, which is suitable for under-driven UUV. Then the Haixiang-H hybrid UUV carried out the navigation test of path tracking, single obstacle avoidance, double obstacle avoidance, and multiple obstacle continuous obstacle avoidance in real environment, which verified the effectiveness of the hybrid potential field method.
Key words: UUV     path tracking     obstacle avoidance     hybrid potential field
0 引　言

1 混合势场法路径跟踪及避障架构

 图 1 混合势场法控制架构图 Fig. 1 Control architecture of hybrid potential field method
2 混合势场法的无人潜航器路径规划方法 2.1 势场法下路径跟踪方法

 图 2 势场法路径跟踪图示 Fig. 2 Diagram of path tracking based on potential field method
 $U_{att}^k = \left\{ {\begin{array}{*{20}{c}} {0,0 < {R_{gk}} \leqslant {d_{goal}}} \text{，}\\ {\dfrac{1}{2}{K_a}R_{gk}^2,{R_{gk}} > {d_{goal}}}\text{。} \end{array}} \right.$ (1)

 $F_{att}^k = - \nabla U_{att}^k = \left\{ {\begin{array}{*{20}{c}} {0,0 < {R_{gk}} \leqslant {d_{goal}}} \text{，}\\ { - {k_a}{R_{gk}}\nabla {R_{gk}},{R_{gk}} > {d_{goal}}} \text{。} \end{array}} \right.$ (2)

 $\left| {{F_{Hatt}}} \right| = \beta H\text{，}$ (3)

 $\left| {{F_{Xatt}}} \right| = \alpha \Delta\text{，}$ (4)

 ${\psi _d} = {\alpha _k} + {\varPsi _r}\text{。}$ (5)

 ${\psi _r} = \arctan \left(\frac{{ - \left| {{F_{Hatt}}} \right|}}{{\left| {{F_{Xatt}}} \right|}}\right)\text{。}$ (6)
2.2 混合势场法下路径跟踪及避障方法

 $u = \left\{ {\begin{array}{*{20}{c}} {\dfrac{1}{2} \times m \times {{\left(\dfrac{1}{{rre}} - \dfrac{1}{{Po}}\right)}^2} \times ra{t^n},rre < Po} \text{，}\\ {0,rre \geqslant Po} \text{。} \end{array}} \right.$ (7)

 $Yrer = m \times \Bigg(\frac{1}{{rre}} - \frac{1}{{Po}}\Bigg) \times \left( {\frac{1}{{Rrei}}} \right) \times ra{t^n}\text{，}$ (8)

 图 3 混合势场法避障受力示意图 Fig. 3 Force diagram of obstacle avoidance with mixed potential field method
3 实航测试

3.1 无障碍路径跟踪测试

 图 4 轨迹跟踪路线 Fig. 4 Trajectory tracking
3.2 有障碍路径跟踪测试

 图 5 单障碍避障路线 Fig. 5 Single obstacle avoidance route

 图 6 双障碍避障路线 Fig. 6 Double obstacle avoidance route

 图 7 多障碍避障路线 Fig. 7 Obstacle avoidance route

4 结　语

 [1] 范展. 水下无人平台自主被动探测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2015 [2] LIU H, XU B, LU DJ, et al. A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm[J]. Applied soft Computing, 2018, 68: 360-376. DOI:10.1016/j.asoc.2018.04.015 [3] 严浙平, 邓超, 赵玉飞, 等. 改进粒子群算法在UUV航迹规划中的应用[J]. 华中科技大学学报(自然科学版), 2013, 41(12): 64-68. [4] 吴正义, 唐念, 陈永亮, 等. 基于改进人工势场法的AUV路径规划[J]. 化工自动化仪表, 2014, 41(12): 1421-1423. [5] WEI K, REN B Y. A method on dynamic path planning for robotic manipulator autonomous obstacle avoidance based on an improved RRT algorithm[J]. Sensors, 2018, 18(2): 571. DOI:10.3390/s18020571 [6] 罗强, 王海宝, 崔小劲, 等. 改进人工势场法自主移动机器人路径规划[J]. 控制工程, 2019, 26(6): 1091-1098. [7] 万方, 周风余, 尹磊, 等. 基于电势场法的移动机器人全局路径规划算法[J]. 机器人, 2019, 41(6): 742-750.