﻿ 流线型高速ROV螺旋桨水动力性能分析
 舰船科学技术  2020, Vol. 42 Issue (12): 41-46    DOI: 10.3404/j.issn.1672-7649.2020.12.008 PDF

Analysis of hydrodynamic performance of propeller in streamlined high-speed ROV
PAN Hao-dong, WANG Zhi-guang, LIU Chun-hu
The State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Abstract: Based on the structural appearance of a streamlined High-Speed ROV, the hydrodynamic performance of the ducted propeller and the channel propeller was simulated by computational fluid dynamics software. By compared the thrust of the propellers with the resistance of the high speed ROV, the feasibility of the design of the streamline ROV design is verified. Under the open water, the thrust, torque and efficiency curves of the ducted propeller were compared with the spectrum curves, which proves the feasibility of numerical simulation. Under static water, the thrust performance of the channel propeller at different speeds was calculated, and the curve corresponding to the thrust and the square of the speed was plotted. At different flow rates, the corresponding thrust and torque were calculated for a certain speed of the channel propeller, and it was found that the channel propeller lost efficiency at a certain flow rate. Through the analysis of the pressure cloud map, the results show that when the flow velocity increases, a negative pressure is generated on the surface of the High-Speed ROV, so that the thrust of the entire propeller is reduced. The results obtained from numerical simulation have practical value in engineering and lay a foundation for the follow-up motion control.
Key words: high-speed ROV     ducted propeller     channel propeller     CFD     hydrodynamic calculation
0 引　言

 图 1 流线型高速ROV的外观结构 Fig. 1 The structure of streamline high speed ROV
1 计算方法 1.1 控制方程

 $\frac{\partial {u}_{i}}{\partial {x}_{i}}=0{\text{，}}$ (1)
 $\begin{split} \frac{\partial {u}_{i}}{\partial t}+\frac{\partial \left({u}_{i}{u}_{j}\right)}{\partial t}=&-\frac{1}{\rho }\frac{\partial p}{\partial {x}_{i}}+{g}_{i}+\\&\mu \frac{\partial }{\partial {x}_{j}}\left(\frac{\partial {u}_{i}}{\partial {x}_{j}}+\frac{\partial {u}_{j}}{\partial {x}_{i}}\right)-\frac{\partial }{\partial {x}_{j}}\overline{{u}_{i}^{'}{u}_{j}^{'}}{\text{。}} \end{split}$ (2)

1.2 湍流模型选取

 $\rho \frac{{\rm{d}}k}{{\rm{d}}t}=\frac{\partial }{\partial {x}_{i}}\left[\left(\mu +\frac{{\mu }_{t}}{{\sigma }_{k}}\right)\frac{\partial k}{\partial {x}_{i}}\right]+{G}_{k}+{G}_{b}-\rho \varepsilon -{Y}_{M}{\text{，}}$ (3)
 $\begin{split} \rho \frac{{\rm{d}}\varepsilon }{{\rm{d}}t}=&\frac{\partial }{\partial {x}_{i}}\left[\left(\mu +\frac{{\mu }_{t}}{{\sigma }_{k}}\right)\frac{\partial \varepsilon }{\partial {x}_{i}}\right]+\\&{C}_{{1g}}\frac{\varepsilon }{k}\left({G}_{k}+ {C}_{{3g}}{G}_{b}\right)+{C}_{\rm{2g}}\rho \frac{{\varepsilon }^{2}}{k} {\text{。}}\end{split}$ (4)

2 导管螺旋桨的敞水性能验证 2.1 几何模型的建立

 图 2 导管螺旋桨三维模型 Fig. 2 Modeling of the thruster
2.2 计算流域及参数设置

 图 3 计算流域 Fig. 3 Graph of calculation field

 图 4 网格划分图 Fig. 4 Grids of calculation domain
2.3 数值仿真和结果分析

 图 5 导管螺旋桨敞水曲线图 Fig. 5 Open water curves of ducted propeller
 ${K}_{{Tp}}=\frac{{T}_{p}}{\rho {n}^{2}{D}^{4}} {\text{，}}$ (5)
 ${K}_{\rm{Td}}=\frac{{T}_{d}}{\rho {n}^{2}{D}^{4}} {\text{，}}$ (6)
 ${K}_{\rm{Q}}=\frac{Q}{\rho {n}^{2}{D}^{5}}{\text{，}}$ (7)
 ${{\rm{\eta}} }_{0}=\frac{{K}_{T}}{{K}_{Q}}\frac{J}{2{\text{π}} }{\text{，}}$ (8)
 $J=\frac{{V}_{A}}{nD}{\text{。}}$ (9)

3 槽道螺旋桨的性能验证 3.1 计算模型及设置

 图 6 槽道螺旋桨计算模型 Fig. 6 Modeling of channel thrusters

 图 7 槽道螺旋桨计算区域 Fig. 7 Calculation field of channel thrusters
3.2 无航速时的推力分析

 图 8 不同方向转速时，推力示意图 Fig. 8 Diagram of thrust direction when speed n is different

 图 9 螺旋桨的轴向推力曲线 Fig. 9 Curve of axial thrust in channel propeller

 图 10 压力云图 Fig. 10 Contours of static pressure at different turn
3.3 不同航速时的推力分析

 ${K}_{f}=\frac{{T}_{c}(u,n)}{{T}_{c}(0,n)}{\text{，}}$ (10)
 ${K}_{n}=\frac{{N}_{T}(u,n)}{{N}_{T}(0,n)}{\text{，}}$ (11)
 ${\eta }=\frac{{u}}{{{u}}_{{j}}}=\frac{{u}}{\sqrt{\dfrac{{{T}}_{{c}}\left(0,{n}\right)}{{\rho }{A}}}}{\text{。}}$ (12)

 图 11 不同航速时槽道螺旋桨的推力比和扭矩比与速度比的关系 Fig. 11 Contours of static pressure at different turn

 图 12 航速2 kn时表面压力云图 Fig. 12 Contours of static pressure at surface when the vehicle speed is 2 kn

 图 13 航速4 kn时表面压力云图 Fig. 13 Contours of static pressure at surface when the vehicle speed is 4 kn
4 推力与阻力的对比验证

 图 14 不同航速时阻力值Fx与导管螺旋桨推力值Td曲线 Fig. 14 Curves of resistance value Fx and thrust value Td at different vehicle speed

 图 15 不同航速时，阻力值Fy，Fz以及槽道螺旋桨推力值Tc的曲线 Fig. 15 Curves of resistance value Fy，Fz and thrust value Tc at different vehicle speed
5 结　语

1）对No.37+Ka4-70导管螺旋桨进行数值模拟计算，将结果和图谱对比表明，仿真值和实际图谱值误差在5%~15%之内。使用Fluent软件可以较为真实地预报螺旋桨的敞水性能，验证了数值仿真的可行性。

2）无航速时，对单独一个槽道螺旋桨仿真模拟，得到了桨叶在不同转速下产生的推力大小，其大小与转速的平方满足线性关系，并且正向旋转时的系数要比负向旋转时大。保持桨叶转速不变，对水下航行器不同航速时槽道螺旋桨的仿真模拟，得到了槽道螺旋桨的推力比和扭矩比与速度比对应的关系，可发现当速度比到达1.5时，槽道螺旋桨的效率达到最小。通过压力云图可以直观地看到，当航速逐渐增大时，在航行器表面会产生负向压力，导致螺旋桨的效率减小。

3）通过水下航行器受到的阻力与螺旋桨推力的对比，本文的流线型高速ROV直航时，可以达到5 kn的设计速度。当直航速度在3 kn以内时，槽道螺旋桨产生的推力可以满足流线型高速ROV以0.5 kn以上的速度做横向和垂向运动。

 [1] 王国强, 盛振邦. 船舶推进[M]. 北京: 国防工业出版社, 1985. [2] 丁一文. 水下潜器系统中导管螺旋桨水动力性能及其梢涡变化对桨叶推力特性的影响[D]. 广州: 华南理工大学, 2018. DING Yi-wen, Hydrodynamic performance of duct propeller and influence of tip vortex variation on thrust characteristics of propeller blades in underwater submersible system[D]. Guangzhou: South China University of Technology, 2018. [3] 吴家鸣, 廖贯宇, 赖宇锋, 等. 导管剖面设计对导管螺旋桨水动力特性的影响[J]. 舰船科学与技术, 2017, 39(11): 38-43. WU Jia-ming, LIAO Guan-yu, LAI Yu-feng, et al. The influence of duct profile design on hydrodynamic characteristics of ducted propeller[J]. Ship Science and Technology, 2017, 39(11): 38-43. [4] 刘辉, 代燚, 冯榆坤, 等. 船舶艏侧推器推力减缩试验与数值计算研究[J]. 中国造船, 2017, 58(4): 1-13. LIU Hui, DAI Yi, FENG Yu-kun, et al. Experimental measurement and numerical simulation of thrust reduction for bow thruster[J]. Shipbuilding of China, 2017, 58(4): 1-13. DOI:10.3969/j.issn.1000-4882.2017.04.001 [5] SAUNDERS A. , NAHON M.. The effect of forward vehicle velocity on through-body AUV tunnel thruster performance[C]. Proceedings of Oceans 2002 Conference, MTS/IEEE, Biloxi, MI, USA. [6] 谷海涛, 林扬, 胡志强. 带槽道桨水下机器人阻力特性的数值分析[J]. 微计算机信息, 2007, 23(5-2): 227-229. GU Hai-tao, LIN Yang, HU Zhi-qiang. Numerical analysis on the resistance of autonomous underwater vehicle with tunnel thruster[J]. Microcomputer Information, 2007, 23(5-2): 227-229. [7] 姚震球, 高慧, 杨春蕾. 螺旋桨三维建模与水动力数值分析[J]. 船舶工程, 2008, 30(6): 23-26. YAO Zhen-qiu, GAO Hui, YANG Chun-lei. 3D modeling and numerical analysis for hydrodynamic force of propeller[J]. Ship Engineering, 2008, 30(6): 23-26. DOI:10.3969/j.issn.1000-6982.2008.06.007 [8] ALISTAIR Palmer, GRANT E. Hearn, PETER Stevenson. Experimental testing of an autonomous underwater vehicle with tunnel thrusters[C]. First International Symposium on Marine Propulsors. June 2009.