﻿ 船艇螺旋桨防缠绕装置设计
 舰船科学技术  2020, Vol. 42 Issue (11): 170-173    DOI: 10.3404/j.issn.1672-7649.2020.11.035 PDF

Research on the design of watercraft propeller anti-twisting device
NING Hai-qiang, CUI Yu-feng, LI Shu, HONG Xiao-hu
Army Military Transportation University of PLA (Zhenjiang Campus), Department of Watercraft Power, Zhenjiang 212003, China
Abstract: As an important part of the ship`s propelling device, the working reliability of propelling directly affects the ship′s navigation safety. In view of the problem that the propeller is often entangled by fishing net, water grass, rope and so on when ships navigate in coastal and inland waters, combined with the structural features of a watercraft propulsion system, the Anti-twisting device of watercraft propeller was designed using the combination design method of shear and tooth cutting. Which can accomplish two-stage cutting of the twine and effectively avoid the failures, such as propeller stuck and stopped, the main engine stopped, the boat lost power and so on. At the same time, this anti-twisting device can also improve the working efficiency of propeller, reduce the working intensity of boat crew and maintenance cost, improve the intact rate of boat equipment and ensure the safety of boat, so it is of great significance to the development of national economy and national defense security.
Key words: watercraft     propeller     anti-twisting device     design
0 引　言

1 船艇相关参数及性能指标 1.1 相关参数

1.2 性能指标

1）螺旋桨得到的功率 ${P_1}$

 ${P_1} = P \times {\eta _f} \times {\eta _j} \times {\eta _z} = 503\;{\rm{kW}}\text{，}$ (1)

2）船艇尾轴转速 $n$

 $n = N/{{{n}}_1} = 400\;{\rm r}/\min \text{。}$ (2)
2 螺旋桨防缠绕装置结构及参数设计 2.1 结构组成

 图 1 主副刀片结构参数 Fig. 1 Structural parameters of main and auxiliary blades
2.2 材料选择

2.3 参数设计与计算

1）主刀片受到的力臂 $R$ ${F_2}$ 取临界值）

 $R = T/{F_1} = 0.501\;{\rm m}\text{。}$ (3)

2）主刀片长度 $L$

 $L = R - {d_2} = 161\;{\rm {mm}}\text{。}$ (4)

3）主副刀片的厚度 $h$

 $\sigma = F/S = 314MP < \left[ \sigma \right]\text{。}$ (5)

4）副刀片支架联接螺栓直径 ${d_f}$

 ${d_f} = c \times \sqrt {F/8{\sigma _{\rm{b}}}} = 15.2\;{\rm{mm}}\text{。}$ (6)

5）主刀片的转矩 $T$

 $T = 9549 \times {P_1}/{\rm{n}} = 12\;981\;{\rm N} \cdot {\rm m}\text{。}$ (7)

6）顺利切断缠绕物所需的力 ${F_1}$

 $F \geqslant 3.14 \times {0.008^2} \times 500 \times {10^6}/4 = 25\;133\text{。}$ (8)

 ${F_1} \geqslant F \times 103\% = 25\;887\;{\rm N}\text{。}$ (9)
2.4 螺旋桨防缠绕装置装配

 图 2 防缠绕装置装配示意图 Fig. 2 Schematic diagram of the anti-twisting device

3 螺旋桨防缠绕装置功能及工作过程 3.1 功能

3.2 工作过程

4 结　语

1）螺旋桨防缠绕装置采用主副刀片对称设计，优化了装置的动平衡特性，在工作过程中基本上不影响螺旋桨和尾轴转动，主刀片组还密封了最易缠绕带状物的尾轴和船艇尾管间的空隙，起到了一定的防护作用。

2）该装置兼备剪切式和锯齿式防缠绕装置的优点，无需破坏螺旋桨和尾轴结构，便于安装，能够实现两级切割效果。

3）该装置能使船艇在航行过程中将靠近螺旋桨的缠绕物切断、主副刀片配合对进入尾轴的缠绕物进行剪切，避免了螺旋桨缠绕异物后费时费力的清理工作和造成的损失，节省大量的维修经费，保证了船艇航行安全。

 [1] 宋成果. 长江干线浮标锚缆漂浮物缠绕问题研究现状及解决思路[J]. 中国水运, 2017(1): 37-42. SONG Cheng-guo. Research status and solution of the floating-winding problem of the Yangtze river mainline buoy and anchor cable[J]. Water transport of China, 2017(1): 37-42. [2] 吴恒. 主机不能加速的故障处理分析[J]. 世界海运, 2012(7): 40-42. WU Heng. Failure processing analysis of diesel engine cannot be accelerated[J]. World maritime transport, 2012(7): 40-42. DOI:10.3969/j.issn.1006-7728.2012.07.013 [3] 王希民. 船艇螺旋桨几起事故分析[J]. 世界海运, 2011(7): 11-12. WANG Xi-min. Several accident analysis of boat propeller[J]. World maritime transport, 2011(7): 11-12. [4] 刁爱民, 田静. 某型特种船艇螺旋桨缠绕渔网的故障特征分析及处理方法[J]. 中国修船, 2014(5): 26-28. DIAO Ai-min, TIAN Jing. Fault analysis and processing method of a propeller entangling fishing nets[J]. China Ship repair, 2014(5): 26-28. [5] 陈海山. 乐清湾港口进港航道渔网碍航问题的研究及探讨[J]. 中国港口, 2012(8): 44-45. CHEN Hai-shan. Research and discussion on the problem of obstructing navigation of fishing net in the entrance channel of yueqing bay port[J]. Chinese ports, 2012(8): 44-45. DOI:10.3969/j.issn.1006-124X.2012.08.033 [6] 范嘉芳. 船艇预防螺旋桨缠绕异物的技术探讨[J]. 中国水运, 2010(6): 26-27. FAN Jia-fang. Technical discussion on prevention of entangling foreign body in boat propeller[J]. Water transport of China, 2010(6): 26-27. [7] 陈炜然, 姚朝帮. 螺旋桨缠绕物切割装置对螺旋桨水动力性能影响[N]. 海军工程大学学报, 2010, 22(1): 101-106. CHEN Wei-ran, YAO Chao-bang. Influence of entanglemant cutting equipment on propeller hydrodynamic performance[N]. Journal of Naval University of Engineering, 2010, 22(1): 101-106. [8] 蓝少雄. 船艇螺旋桨防水草缠绕装置[J]. 江苏船艇, 1988(2): 42-43. LAN Shao-xiong. Water proof straw winding device for boat propeller[J]. Boat of Jiangsu, 1988(2): 42-43. [9] 章可畏, 夏泰淳. 一种新型的螺旋桨防水草装置[J]. 船艇工程, 1989(5): 77-80. ZHANG Ke-wei XIA Tai-chun. A new type of propeller waterproof straw device[J]. Ship engineering, 1989(5): 77-80. [10] 白恩庆, 孔祥臣. 防缠绕螺旋桨[P]. 中国, 实用新型, ZL201120098899.7. 2011. (in Chinese). Bai En-qing, Kong Xiang-chen. Anti-winding propeller[P]. China, utility model paten, ZL201120098899.7. 2011. [11] 武传坤. 一种防缠绕的船艇驱动装置[P]. 中国, 实用新型, ZL201220566922.5. 2012. Wu Chuan-kun. A drive device of anti - winding boat[P]. China, utility model paten, ZL201220566922.5. 2012. [12] 胡加永, 楼卫增. 船艇螺旋桨防缠绕螺旋切割刀的设计[J]. 中国水运, 2016, 37(6): 56-57. HU Jia-yong, LOU Wei-zeng. Design of anti - winding spiral cutter for boat propeller[J]. Water transport of China, 2016, 37(6): 56-57. [13] 张连仲, 刘国平. 船艇螺旋桨缠绕物自动切割装置研究[J]. 船艇工程, 2009(6): 77-80. ZHANG Lian-zhong, LIU Guo-ping. Study on the automatic cutting device for ship propeller entanglement[J]. Ship Engineering, 2009(6): 77-80. [14] 王运炎, 朱莉. 机械工程材料[M]. 北京: 机械工业出版社. 2012. [15] 叶礼裕, 王超, 李鹏, 等. BEM/FEM耦合螺旋桨静强度计算方法[J]. 中国船艇研究, 2017, 12(5): 64-74. YE Li-yu WANG Chao LI Peng, et al. Calculation of marine propeller static strength based on coupled BEM/FEM[J]. Chinese Journal of Ship Research, 2017, 12(5): 64-74. [16] 张永三. 基于Matlab的船艇螺旋桨推力与转矩仿真计算[J]. 舰船科学技术, 2018, 40(3A): 1-3. ZHANG Yong-san. The simulative calculation of thrust and torque of ship propeller based on Matlab[J]. Ship Science and Technology, 2018, 40(3A): 1-3.