﻿ 基于刚柔耦合的航炮炮口振动研究
 舰船科学技术  2020, Vol. 42 Issue (11): 165-169    DOI: 10.3404/j.issn.1672-7649.2020.11.034 PDF

Research on muzzle vibration of an aircraft gun based on rigid-flexible coupling model
LIU Sheng-qiang, YIN Peng-xian, CHEN Lei, LI Li
Zhengzhou Electromechanical Engineering Research Institute, Zhengzhou 450015, China
Abstract: In order to study the influence of an aircraft gun’s flexible components such as the barrel and muzzle clamp on the muzzle vibration at different firing rate, The FEM theories is used to calculate the modal of the flexible components and establish its rigid region. On this basis, a rigid and flexible coupling virtual prototype of aircraft gun is established by using dynamic theory, and the gun muzzle vibration displacement of virtual prototype under different firing rate is analyzed and discussed. The simulation results show that the flexible components such as gun barrel and muzzle clamp affect the lateral and longitudinal vibration displacement of the muzzle. The research on the muzzle vibration of aircraft gun provides theoretical basis for the research on the shooting accuracy of aircraft gun and the overall design of aircraft.
Key words: rigid-flexible coupling virtual prototype     dynamics theory     muzzle vibration
0 引　言

1 刚柔耦合模型的建立

 ${Q_i} = \left[ {x,y,z,\psi ,\theta ,\varphi } \right]_i^{\rm{T}}\text{，}$
 $Q = {\left[ {q_i^{\rm{T}},\Lambda ,q_n^{\rm{T}}} \right]^{\rm{T}}}\text{。}$

 $\frac{{\rm d}}{{{\rm d}t}}{\left( {\frac{{\partial T}}{{\partial q}}} \right)^{\rm{T}}} - {\left( {\frac{{\partial T}}{{\partial q}}} \right)^{\rm{T}}} + \varphi _q^{\rm{T}}\rho + \theta _q^{\rm{T}}\mu = Q\text{，}$

 $\varphi \left( {q,t} \right) = 0\text{，}$

 $\theta \left( {q,\mathop q\limits^ \bullet ,t} \right) = 0\text{。}$

 $F\left( {q,\mathop {q,}\limits^ \bullet \mathop {q,}\limits^{ \bullet \bullet } \lambda ,t} \right) = { M}\left( {q,t} \right)\mathop q\limits^{ \bullet \bullet } + { {\varphi}} _q^{\rm T}\left( {q,t} \right)\lambda - f\left( {q,\mathop q\limits^ \bullet ,t} \right) = 0\text{，}$
 ${ {\varphi}} \left( {q,t} \right) = 0\text{，}$
 $\left\{ {\begin{array}{*{20}{c}} {{ {\varphi}} \left( {q,\mathop q\limits^ \bullet ,t} \right) = {{ {\varphi}} _q}\left( {q,t} \right) - v\left( {q,t} \right) = 0}\text{，} \\ {v = - {{ {\varphi}} _i}\left( {q,t} \right)} \text{，} \end{array}} \right.$
 $\left\{ {\begin{array}{*{20}{c}} {{ {\varphi}} \left( {q,\mathop q\limits^ \bullet ,\mathop q\limits^{ \bullet \bullet } ,t} \right) = {{ {\varphi}} _q}\left( {q,t} \right)\mathop q\limits^{ \bullet \bullet } }\text{，} \\ { - \eta \left( {q,\mathop q\limits^ \bullet ,t} \right) = 0} \text{，}\\ {\eta = - {{\left( {{\varphi _q}\mathop q\limits^ \bullet } \right)}_q}\mathop q\limits^ \bullet - 2{\varphi _{qt}}\mathop q\limits^ \bullet - {\varphi _n}} \text{。} \end{array}} \right.$

 图 1 ADAMS中刚柔耦合建模流程 Fig. 1 Modelling flow charts of rigid-flexible coupling in ADAMS

1.1 柔性体-身管的模态计算与刚性区域的建立

 图 2 Ansys下身管刚性区域 Fig. 2 Rigid region of gun tube in Ansys

 图 3 身管-炮口夹箍组件的约束方式 Fig. 3 Restraint mode of gun tube-muzzle clamp

 图 4 身管-炮口夹箍前4阶振型 Fig. 4 4 extended modal shape of gun tube - muzzle clamp

1）身管-炮口夹箍的第1阶和第3阶模态以弯曲振型为主，第2阶和第4阶模态以扭转为主。

2）航炮自动机的射速为3000发/分，振动频率为50 Hz，由表1得到该身管-炮口夹箍组件的前4阶模态振动频率范围为98–333 Hz。因此在正常射击工况下，该结构各阶频率远离了载荷激励频率，其本体不会出现共振情况，其他频率皆分布在高频段，这说明了身管-炮口夹箍频率结构设计的合理性。

1.2 炮口夹箍的模态计算与刚性区域建立

 图 5 炮口夹箍组件的约束方式 Fig. 5 Restraint mode of muzzle clamp

 图 6 炮口夹箍各阶振型 Fig. 6 Modal shapes of muzzle clamp

 图 7 炮口夹箍刚性区域的建立 Fig. 7 Establishment of muzzle clamp rigid region

2 航炮刚柔耦合虚拟样机的建立

 图 8 自动机刚柔耦合虚拟样机模型 Fig. 8 Virtual prototype model of rigid-flexible coupling of automaton
3 计算结果分析

 图 9 不同射速下炮口横向/纵向位移-时间曲线 Fig. 9 Transverse/longitudinal displacement-time curves of the muzzle at different firing rate

4 结　语

 [1] 徐诚, 王亚平. 火炮与自动武器动力学[M]. 北京: 北京理工大大学出版社, 2006. [2] 郭小炜. 刚柔耦合系统的动力学建模与响应分析[D]. 重庆: 重庆大学. 2016. [3] 王娟. 基于虚拟样机技术的航炮系统动力学仿真研究[D]. 西安: 西北工业大学. 2004. [4] 郭振锋, 金国光, 畅博彦, 等. 刚-柔性机械臂动力学建模及其动力学特性研究[J]. 天津工业大学学报, 2013, 32(1): 70-74. [5] 王欣, 杜汉平, 滕儒民. 基于刚柔耦合的履带起重机虚拟样机建模技术[J]. 中国工程机械学报, 2007, 5(1): 26-31. [6] 刘银虎, 缪炳祺. 多体动力学仿真软件ADAMS理论基础及其功能分析[J]. 电子与封装, 2005, 5(4): 25-28. [7] 陈立平. 机械系统动力学分析及ADAMS应用教程[M]. 北京: 清华大学出版社, 2005. [8] 谢文献, 滕腾, 柴德民. 基于ADAMS的水力式油管切割工具多体动力学研究[J]. 石油机械, 2019, 47(2): 86-90. [9] 刘雷. 弹丸-身管耦合系统动力学模型[J]. 振动与冲击, 2007, 26(6): 121-124. [10] 王德石, 史跃东. 火炮振动分析与多体系统模型研究[J]. 动力学与控制学报, 2012, 10(4): 303-323.