﻿ 燃气-蒸汽式弹射动力系统喷水压差规律研究
 舰船科学技术  2020, Vol. 42 Issue (11): 157-160    DOI: 10.3404/j.issn.1672-7649.2020.11.032 PDF

1. 中国船舶集团公司第七一三研究所，河南 郑州 450015;
2. 河南省水下智能装备重点实验室，河南 郑州 450015

Research on the law of the water-spray pressure difference in the gas-steam ejection power system
SHI Qing-san1,2, QIANG Xing-wei1,2, WANG Heng1,2, HE Dan-na1,2, SHEN Bai-liang1,2
1. The 713 Research Institute of CSSC, Zhengzhou 450015, China;
2. Henan Key Laboratory of Underwater Intelligence Equipment, Zhengzhou 450015, China
Abstract: The law of the water-spray pressure difference in the gas-steam ejection power system was studied. The influence of the secondary diversion pipe characteristic value on the cooler inner passage and the pressure of the water-spray zone was analyzed, and experiment was conducted. The result shows that too big or too small of the the characteristic value go against the control of the water-spray pressure difference. Adopting recommended values is beneficial to the stability of the water-spray pressure difference, the recommended range is 0.2～0.35. The research provides a reference for the design of gas-steam ejection power system.
Key words: gas-steam ejection     the secondary diversion pipe     pressure distribution     water-spray pressure difference     computational fluid dynamics
0 引　言

 图 1 某型燃气-蒸汽式动力系统内通道二维结构示意图 Fig. 1 The two dimensional structure of inner passage of a gas steam power system

1 仿真分析 1.1 基本假设

1.2 控制方程

 $\frac{{\partial \left( {{\alpha _q}{\rho _q}} \right)}}{{\partial t}} + \nabla \left( {{\alpha _q}{\rho _q}{u_j}} \right) = 0\text{，}$ (1)
 $\sum\limits_{q = 1}^n {{\alpha _q} = 1} \text{，}$ (2)

 $\frac{\partial }{{\partial t}}\left( {\rho {u_i}} \right) + \nabla \cdot \left( {\rho {u_i}{u_i}} \right) = - \nabla p + \nabla \cdot [\mu \left( {\nabla {u_i} + \nabla {u_j}} \right)] + \rho \overrightarrow g + \overrightarrow F \text{，}$ (3)

 $\frac{\partial }{{\partial t}}\left( {\rho E} \right) + \nabla \cdot \left( {{u_i}(\rho E + p)} \right) = \nabla \cdot \left( {{k_{eff}}\nabla T} \right) + {S_h}\text{，}$ (4)
 $E = \frac{{\sum\limits_{q = 1}^n {{\alpha _q}{\rho _q}{E_q}} }}{{\sum\limits_{q = 1}^n {{\alpha _q}{\rho _q}} }}\text{。}$ (5)

1.3 网格划分及边界条件

 图 2 网格划分示意图 Fig. 2 The meshing diagram

1.4 仿真结果及分析 1.4.1 动力系统内通道流场仿真

 图 3 特征值0.5结构下动力系统内通道0.15 s（a）、0.25 s（b）、0.35 s（c）马赫数Ma分布示意图 Fig. 3 The schematic diagram of distribution of Mach number of 0.15 s (a), 0.25 s (b), and 0.35 s (c) in the inner passage of power system under the structure of eigenvalue 0.5

1.4.2 不同特征值下内通道流动状态的对比

 图 4 特征值0.5（a）、0.25（b）、0.15（c）结构下相同时刻（0.15 s）内通道马赫数Ma分布示意图 Fig. 4 The schematic diagram of distribution of channel Mach number at the same moment (0.15 s) under the structure of characteristic values 0.5 (a), 0.25 (b), 0.15 (c)
1.4.3 不同特征值结构下喷水区压力的对比

 图 5 特征值0.5（a）、0.25（b）、0.15（c）结构下相同时刻（0.25 s）内通道压力分布示意图 Fig. 5 The schematic diagram of channel pressure distribution at the same moment (0.25 s) under the structure of characteristic values 0.5 (a), 0.25 (b), and 0.15 (c)

 图 6 特征值0.5（a）、0.25（b）、0.15（c）结构下相同时刻（0.25 s）喷水区压力分布示意图 Fig. 6 The schematic diagram of the pressure distribution in the spray area at the same moment (0.25 s) under the structure of characteristic values 0.5 (a), 0.25 (b) and 0.15 (c)

2 试验验证

 图 7 特征值0.5结构下喷水压差系数示意图 Fig. 7 The schematic diagram of the spray pressure difference coefficient under the structure of characteristic value 0.5

 图 8 特征值0.25结构下喷水压差变化曲线 Fig. 8 The variation curve of water spray pressure difference under the structure of characteristic value 0.25

3 结　语

 [1] 李咸海, 王俊杰. 潜地导弹发射动力系统[M]. 哈尔滨: 哈尔滨工程大学出版社, 2000. [2] 赵险峰, 王俊杰. 潜地弹道导弹发射系统内弹道学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2001. [3] 倪火才. 潜地弹道导弹发射装置构造[M]. 哈尔滨: 哈尔滨工程大学出版社, 1998. [4] 芮守祯, 邢玉明, 梁材. 高温高压超声速气液两相流场数值模拟[J]. 航空动力学报, 2011, 26(5): 991-996. [5] 刘伯伟, 姜毅. 气化效应对燃气蒸汽式弹射气液两相流场的影响[J]. 固体火箭技术, 2014, 37(2): 156-160. [6] 胡晓磊, 乐贵高, 马大为, 等. 喷水对冷却器流场影响数值研究[J]. 计算机仿真, 2015, 32(1): 117-121. [7] 王汉平, 吴菊华. 基于CFD的潜射导弹筒口压力场预测[J]. 弹道学报, 2008, 20(4): 73-87. [8] Inc B F. Fluent User's Guide[C]//Fluent Incorporated, Lebanon NH, 2010. [9] 颜凤, 史少岩, 姜毅. 燃气蒸汽式弹射内弹道研究[J]. 舰船科学技术, 2017, 39(3): 118-122. [10] 李仁凤, 乐贵高, 马大为, 等. 结构参数对燃气-蒸汽弹射载荷和弹道影响[J]. 上海交通大学学报, 2016, 50(11): 1789-1794.