2. 河南省水下智能装备重点实验室,河南 郑州 450015
2. Henan Key Laboratory of Underwater Intelligence Equipment, Zhengzhou 450015, China
在潜载导弹发射装置中,空调系统承担着调节发射装置筒内温度,为导弹提供合适贮存条件的重要功能,是发射装置的重要组成部分。空调系统一般分为通气空调和水循环空调,其中水循环空调是利用管路中水温的高低对发射筒内实现供热或供冷的效果,从而保证发射筒内温度的恒定[1-2]。
水循环空调管路布置在发射装置发射筒内壁,基于空间有限,需要首先计算出发射筒的空调热负荷,求出所需水管的管道表面积,进而验证发射筒内壁面空间能否满足水循环空调方案的需求。一般采用稳态的方法计算空调的热冷负荷,根据能量守恒定律,空调热负荷即通过发射筒壁面散失或者吸收的热量[3]。发射筒在夏季吸收热量最多,在冬季散失热量最多,所以只需要计算出发射筒在夏、冬两季的空调热负荷,即可知道空调的极限热负荷。
1 仿真模型 1.1 物理模型潜载导弹发射装置发射筒的主要组成包括内筒、外筒、筒底、筒盖。
发射筒实际结构非常复杂,整体进行建模计算量很大。本文通过简化发射筒模型计算空调热负荷,为了简化分析需做以下基本假设:
1)认为各层材料物性均匀不变,并且忽略层与层之间的接触热阻;
2)由于发射筒温度分布具有对称性,在取局部模型进行传热计算时,可设温度分布对称处为绝热;
3)发射筒筒状结构轴向方向温度不变;
简化模型相关计算可以为实际的空调热负荷提供参考。简化模型如图1所示。
![]() |
图 1 发射筒几何结构示意图 Fig. 1 Geometry diagram of launcher |
发射筒上部暴露于空气的时候空调热负荷最大,这时发射筒从所面对的外部环境角度分析,可以分为舷外段、舱内段和筒底段3个部分。其中舷外段外部环境为空气,舱内段外部环境为舱室环境,筒底段外部环境为海水。
考虑到舱内段发射筒外部环境是舱室,本身已有空调调节温度,可以忽略舱内段发射筒的内外温差,即不用考虑舱内段的空调热负荷,仅考虑舷外段和筒底段。简化后的模型轴向方向相同部位所处环境一样,传热过程和材料结构一样。所以通过局部仿真计算得到平均热流密度,再与换热面积相乘得到每段换热量,最后相加可得到总的发射装置热负荷。发射筒外筒内外壁面考虑一定厚度保温层,内外筒之间有一定间隙,赋予空气的属性;筒盖内外壁面考虑有一定厚度保温涂层;筒底内侧考虑有保温涂层,外侧考虑有一定厚度的绝缘材料。舷外段筒盖和圆筒局部模型如图2和图3所示,筒底段模型如图4所示。
![]() |
图 2 筒盖局部模型示意图 Fig. 2 Schematic diagram of local model of cylinder cover |
![]() |
图 3 圆筒局部模型示意图 Fig. 3 Schematic diagram of local cylinder model |
![]() |
图 4 筒底模型示意图 Fig. 4 Schematic diagram of cylinder bottom model |
简化模型中筒盖,圆筒段,底部的内表面面积分别记为
发射筒通过壁面的换热过程有热传导和对流传热2种。热传导相关计算公式如下:
$q = {\rm{ - }}k\frac{{{\rm{d}}T}}{{{\rm{d}}x}}{\text{。}}$ | (1) |
其中:
$q = h({T_S} - {T_\infty }){\text{。}}$ | (2) |
其中:
$Q = \sum\limits_{i = 1}^n {{q_i}{A_i}}{\text{。}} $ | (3) |
其中:
${Q_r} = 5 \times {10^{ - 8}}\left[ {{{\left( {{{\rm{t}}_p} + 273} \right)}^4} - {{\left( {AUST + 273} \right)}^4}} \right]{\text{。}}$ | (4) |
其中:
$S = Q/{Q_r}{\text{。}}$ | (5) |
首选通过仿真计算得到热流密度,代入式(3),可得到夏季和冬季的空调热负荷。选取管路温度
仿真计算中相关材料的导热系数可以通过资料直接查询得到,取值如表1所示。不同部位对流换热系数取值如表2所示[8-10]。其中内外筒、筒盖、筒底材料选取碳钢来进行计算。
![]() |
表 1 相关材料热学性能参数 Tab.1 Thermal performance parameters of related materials |
![]() |
表 2 不同部位对流换热系数 Tab.2 Convective heat transfer coefficient of different parts |
使用Ansys软件对三维模型进行网格划分。筒盖局部模型不规则,网格类型采用四面体网格,网格数28195个,如图5所示。计算时保温涂层与筒盖之间采用绑定约束,把发射筒内环境温度赋予筒盖内侧保温涂层表面,赋予筒盖外侧保温涂层与环境之间对流换热条件,对流换热系数如表3所示,环境温度即外部空气温度。其他面赋予绝热条件。
![]() |
图 5 筒盖局部模型网格示意图 Fig. 5 Grid diagram of local model of cylinder cover |
圆筒段模型是一个规则的圆筒形状,采用的网格类型为六面体网格,网格数14152个,如图6所示。内外筒间空气赋予流体性质,计算时保温涂层与筒盖之间采用绑定约束;外筒内外保温涂层表面与空气之间赋予对流换热条件,内筒外壁与筒间空气赋予对流换热条件,对流换热系数取表3中值。根据所处环境给予内筒内壁温度与发射筒内温度一致,外筒外壁保温涂层外部环境温度与环境空气温度一致。其他面给与绝热条件。
![]() |
图 6 圆筒段局部模型网格示意图 Fig. 6 Grid diagram of local model of cylinder section |
筒底段模型是一个带弧度的圆板,采用的网格类型为六面体网格,网格数26536个,如图7所示。计算时保温涂层与筒盖、保温层与筒底之间采用绑定约束,保温涂层表面赋予发射筒内部环境温度,底部是海水环境,直接给表面赋予与海水温度。其他面赋予绝热条件。
![]() |
图 7 筒底模型网格示意图 Fig. 7 Grid diagram of cylinder bottom model |
舷外段传热过程分为圆筒段传热过程、筒盖传热过程。夏季发射筒内部温度比外部环境温度低,是一个吸热的过程。用Ansys Workbench 18.0模拟传热过程,得到舷外段夏季筒盖内壁平均热流密度
![]() |
图 8 夏季筒盖局部模型热流密度云图 Fig. 8 Heat flux nephogram of local model of cylinder cover in summer |
![]() |
图 9 夏季圆筒段局部模型热流密度云图 Fig. 9 Local model heat flux nephogram of cylinder section in summer |
筒底段内壁敷设保温层,外部有厚度一定厚度的材料绝缘。添加边界条件,得到夏季筒底段平均热流密度
![]() |
图 10 夏季筒底段热流密度云图 Fig. 10 Cloud chart of heat flux density at the bottom of cylinder in summer |
夏季空调热负荷为:
${Q_1}{\rm{ = }}{q_1} \times {A_1} + {q_2} \times {A_2} + {q_3} \times {A_3}{\text{,}}$ |
假设夏季管路温度
${S_1} = {Q_1}/{Q_r}{\text{。}} $ |
冬季发射筒内部温度比外部环境温度高,是一个散热的过程。修改边界条件,冬季舷外段局部热流密度计算结果云图如图11和图12所示。可得到冬季舷外段筒盖内壁平均热流密度
![]() |
图 11 冬季筒盖局部模型热流密度云图 Fig. 11 Heat flux nephogram of local model of cylinder cover in winter |
![]() |
图 12 冬季圆筒段局部模型热流密度云图 Fig. 12 Local model heat flux nephogram of cylinder section in winter |
添加冬季筒底段边界条件,计算得到热流密度云图如图13所示。可得到冬季筒底段内壁平均热流密度
![]() |
图 13 冬季筒底段热流密度云图 Fig. 13 Cloud chart of heat flux density at the bottom of cylinder in winter |
冬季空调热负荷为:
${Q_2}={{\rm{q}}_4} \times {A_4} + {q_5} \times {A_5} + {q_6} \times {A_6}{\text{,}}$ |
假设夏季管路温度
${S_2} = {Q_2}/{Q_r}{\text{。}}$ |
本文提出一种发射筒内水循环空调热负荷及管路表面积的计算方法。通过简化发射筒模型,对发射筒实际传热过程中环境条件与仿真计算时边界条件的转换进行描述。使用有限元仿真方法计算夏季和冬季情况下发射筒内部环境处于恒温时在所需的空调热负荷。最后用文中给出的方法,计算得到发射筒内采用水循环式空调所需的管路表面积。结果表明,这种方法是可行的。研究结果为发射筒空调热负荷计算提供一种方法,并且为发射筒内部水循环空调设计提供参考。
[1] |
陈国峥, 孙建中. 舰载导弹发射装置通用化技术研究[J]. 舰船科学技术, 2003(2). |
[2] |
李卡, 张志华. 导弹发射装置可靠性增长试验计划的研究[J]. 舰船科学技术, 2004(3). |
[3] |
慕清浩. 船舶空调系统变频调节的节能性研究[D]. 大连: 大连海事大学. 2016.
|
[4] |
王欣. 空气源热泵直供地板辐射供暖的效果分析与研究[D]. 石家庄: 河北科技大学. 2016.
|
[5] |
刘海. 双面辐射供冷系统换热性能研究[D]. 重庆: 重庆大学. 2012.
|
[6] |
张双迎. 辐射供冷空调方式的特性及结露问题的研究[D].镇江: 江苏科技大学. 2012.
|
[7] |
石磊. 基于负荷预测在线修正的冰蓄冷空调系统优化运行研究[D]. 西安: 西安建筑科技大学. 2002.
|
[8] |
李伟光. 船舶围壁空气层自然对流对传热系数的影响分析[J]. 建筑热能通风空调, 2004(5). DOI:10.3969/j.issn.1003-0344.2004.05.003 |
[9] |
C DHARUMAN. Performance evaluation of an integrated solar water heater as an option for building energy conservation[J]. Energy Buildings, 2006, 38: 214-219. DOI:10.1016/j.enbuild.2005.05.007 |
[10] |
KEFA Rabah. Development of energy-efficient passive solar building design in nicosia cyprus[J]. Renewable Energy, 2005, 30: 937-956. DOI:10.1016/j.renene.2004.09.003 |