﻿ 冰区加强型集装箱船碎冰航道航行阻力数值模拟
 舰船科学技术  2020, Vol. 42 Issue (11): 49-54    DOI: 10.3404/j.issn.1672-7649.2020.11.010 PDF

1. 武汉船舶职业技术学院，湖北 武汉 430050;
2. 武汉第二船舶设计研究所，湖北 武汉 430064

A numerical simulation on resistance of ice-strengthening container ship in crushed ice channel
ZHANG Yuan-shuang1, QI Jiang-hui2, ZHENG Ya-xiong2, WU Shu-qing2
1. Wuhan Institute of Shipbuilding Technology, Wuhan 430050, China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
Abstract: In this paper, a discrete element multiphase interaction model was combined with Euler multiphase flow to carry out numerical simulation on resistance of a Ice-strengthening container ship for the sailing process in crushed ice channel. The CFD method is used tu calculate the fluid resistance acting on the hull, while the DEM method was used tu calculate the contact force and the buoyant force and drag force model were employed between the fluid and pack ice. Based on the combined CFD-DEM method, the phenomenon in this simulation agreed well with the experiment. Then the distribution around ship and the influence of ship speed on the force of hull was researched. The result showed that both the contact force and water resistance increase with the increase of the ship speed and the speed of water resistance increase is higher than that of the contace force increase. While the proportion of water resistance to the total resistance increases with the increase of the speed.
Key words: ice ship     curshed ice resistance     discrete element method     CFD
0 引　言

1 理论基础 1.1 数值计算方法

1.2 离散项接触力模型

 图 1 接触力模型 Fig. 1 Model of contact force

Hertz-Mindlin无滑移接触模型是一种非线性弹簧-阻尼器接触模型的变形[15]。作用在2个单元A和B之间的力可表示为：

 ${F_{contact}} = {F_n} + {F_t}{\text{。}}$ (1)

 $\begin{split} {F_n} = & - {K_n}{d_n} - {N_n}{v_n}{\text{，}} \\ {K_n} = & \frac{4}{3}{E_{eq}}\sqrt {{d_n}{R_{eq}}}{\text{，}} \\ {N_n} = & \sqrt {(5{K_n}{M_{eq}})} {N_{n\; damp}}{\text{；}} \end{split}$ (2)

 $\begin{split} {F_t} = & \frac{{\left| {{K_n}{d_n}} \right|{C_{fs}}{d_t}}}{{\left| {{d_t}} \right|}} {\text{，}} \\ {K_t} = & 8{G_{eq}}\sqrt {{d_n}{R_{eq}}} {\text{，}} \\ {N_t} = & \sqrt {(5{K_t}{M_{eq}})} {N_{t\; damp}} {\text{。}} \end{split}$ (3)

 $\begin{split} {M_{eq}} = & \frac{1}{{\frac{1}{{{M_A}}} + \frac{1}{{{M_B}}}}} {\text{，}} \\ {E_{eq}} = & \frac{1}{{\frac{{1 - v_A^2}}{{{E_A}}} + \frac{{1 - v_B^2}}{{{E_B}}}}} {\text{，}} \\ {G_{eq}} = & \frac{1}{{\frac{{2(2 - {v_A})(1 + {v_A})}}{{{E_A}}} + \frac{{2(2 - {v_B})(1 + {v_B})}}{{{E_B}}}}} {\text{。}} \end{split}$ (4)

2 数值计算流程 2.1 离散元模型

 图 2 碎冰几何形状 Fig. 2 Geipetric shape of crushed ice

 图 3 数值航道中的碎冰粒子 Fig. 3 Ice particles in numerical channels

 $F(D) = \frac{1}{2}\left[ {1 + erf\left( {\frac{{\ln D - \ln \bar D}}{{\sigma \sqrt 2 }}} \right)} \right]{\text{。}}$ (5)

 图 4 多相相互作用示意图 Fig. 4 Schematic diagram of mutiphase interaction
2.2 计算模型设置

 图 5 计算域及边界条件 Fig. 5 Calculation domain and boundary conditions

 图 6 网格划分结果 Fig. 6 Result of meshing
3 数值计算结果及分析 3.1 船冰接触验证

 图 7 船-冰碰撞现象模拟 Fig. 7 Simulation of ship-ice collision
3.2 碎冰运动状态分析

 图 8 船体周围碎冰的运动状态 Fig. 8 Movement position of crushed ice around hull

 图 9 不同航速碎冰状态对比 Fig. 9 Movement position of crushed ice in different speed
3.3 航速对碎冰阻力的影响

 图 10 低速和高速时船体阻力分量时历曲线 Fig. 10 Time history curve of hull resistance at low speed and high speed

 图 11 船体总阻力及分量随航速变化曲线 Fig. 11 Comparision of resistance components

 图 12 不同航速船体表面接触力分布 Fig. 12 Contace force distribution of hull surface in different speed
4 结　语

1）基于CFD-DEM结合的数值方法可以有效模拟船舶在碎冰区航行的过程，对碎冰在船体附近的堆积、翻转等运动状态可以有效模拟，采用该方法进行船-冰-水耦合作用分析是有效可行的。

2）碎冰在与船体接触作用后会在首部形成一个明显的减速区，使得碎冰在首部堆积。首部的碎冰一部分沿着船体侧边或底部滑行。在尾部区域，由于尾流的作用会在船体尾部形成一条碎冰数量较少的航道，而随着航速的增大，该航道碎冰变得更少，同时船体左右两侧的兴波使得船体排开碎冰的作用更加明显。

3）航速对碎冰区航行船舶阻力有重要影响，碎冰区航行阻力与敞水航行阻力曲线特性一致。随着航速的增大，水阻力的增大速度远高于船-冰接触力的增大速度，水阻力占总阻力的比重随着航速的增大而增大明显。

 [1] WANG J, DERRADJI A A. Numerical prediction for resisitance of Canadian icebreaker CCGS Terry Fox in level ice[C]// ICSOT 2009: Ice Class Vessels, 2011: 72. [2] KIM M C, LEE S K, LEE W J, et al. Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J]. International Journal of Naval Architecture and Ocean Engineering, 2013, 5(1): 116-131. DOI:10.2478/IJNAOE-2013-0121 [3] 郭春雨, 李夏炎, 王帅, 等. 冰区航行碎冰阻力预报数值模拟方法[J]. 哈尔滨工程大学学报, 2016, 37(2): 145-156. GUO C Y, LI X Y, WANG S, et al. A numerical simulation method for resistance prediction of ship in pack ice[J]. Journal of Harbin Engineering University, 2016, 37(2): 145-156. [4] 王超, 封振, 李兴, 等. 航行于碎冰区船舶冰阻力与冰响应探析[J]. 中国舰船研究, 2018, 13(1): 73-78. WANG C, FENG Z, LI X, et al. Analysis on ice resistance and ice response of ships sailing in brash ice[J]. Chinese Journal of Ship Research, 2018, 13(1): 73-78. [5] 李紫麟, 刘煜, 孙珊珊, 等. 船舶在碎冰区航行的离散元模型及冰载荷分析[J]. 力学学报, 2013, 45(6): 868-877. LI Z L, LIU Y, SUN S S, et al. Analysis of ship maneuvering performances and ice loads on ship hull with discrete element model in broken-ice fields[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(6): 868-877. [6] TUHKURI J, POLOJÄRVI A. A review of discrete element simulation of ice-structure interaction[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 218, 376(2129). [7] CORLETT E C B, SNAITH G R. Some aspects of icebreaker design[J]. Trans. RINA, 1964, 1064(4): 389-413. [8] 郭春雨, 谢畅, 王帅. 碎冰条件下冰区船阻力性能试验研究[J]. 哈尔滨工程大学学报, 2016, 37(4): 481-486. GUO C Y, XIE C, WANG S. Resistance of ships in pack ice conditions[J]. Journal of Harbin Engineering University, 2016, 37(4): 481-486. [9] 郭春雨, 王帅, 田太平, 等. 波浪-浮冰作用下冰区船舶阻力性能试验[J]. 哈尔滨工程大学学报, 2017, 38(10): 1511-1517. GUO C Y, WANG S, TIAN T P, et al. Experiment research on ice-going ship resistance performance under combined wave-ice effect[J]. Journal of Harbin Engineering University, 2017, 38(10): 1511-1517. [10] 黄焱, 李伟, 王迎晖, 等. 大型运输船极地浮冰去航行阻力的模型试验[J]. 中国造船, 2016, 27(3): 26-35. HUANG Y, LI W, WANG Y H, et al. Model tests on the resistance of a large transport ship in arctic region with pack ice[J]. Shipbuliding of China, 2016, 27(3): 26-35. [11] 黄焱, 孙剑桥, 季少鹏, 等. 大型运输船极地平整冰区航行阻力的模型试验[J]. 中国造船, 2016, 57(3): 36-44. HUANG Y, SUN J Q, JI S P, et al. Model tests of resistance of transport vessel navigating under level ice conditions in polar region[J]. Shipbuliding of China, 2016, 57(3): 36-44. [12] STEPHEN B P. Turbulent flows[M]. United Kindom: Cambridge University Press, 2010. [13] CHOI J, YOON S B. Numerical simulations using momentum source wave-maker applied to RANS equation model[J]. Coastal Engineering, 2009, 56(10): 1043-1060. DOI:10.1016/j.coastaleng.2009.06.009 [14] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65. DOI:10.1680/geot.1979.29.1.47 [15] Di RENZO A, Di MAIO F P. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes[J]. Chemical Engineering Science, 2004, 59(3): 525-541. DOI:10.1016/j.ces.2003.09.037 [16] TIMCO G W. Ice forces on structures: physical modelling techniques[C]// Second IAHR State-of-the-Art Report on Ice and Arctic Engineering. Canada, Newfoundland, 2015. [17] Brash ice tests for a Panmax bulker with ice class 1B: HSVA Report[R]. 2012.