﻿ 大型集装箱船风洞试验研究
 舰船科学技术  2020, Vol. 42 Issue (10): 62-64    DOI: 10.3404/j.issn.1672-7649.2020.10.013 PDF

Research on large container ship based on tunnel test
SUN Zhi-yuan, ZAN Li-ru, SUN Han-bing, HOU Yong-kang
College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: In order to study the characteristics of the wind resistance coefficient of superstructure building with various load states, wind tunnel test based on the 14000 container ship was carried out on the state of the no-load and the design draft, as well the wind resistance coefficient was obtained. The tunnel test indicates: as increasing wind angle, in both no-load and the design draft state, longitudinal wind resistance coefficient shows sine curve law and exists opposite resistance peaks; while the transverse wind resistance coefficient curve presents parabolic law and reaches curve peak when ship exposed in cross wind. Since the gravity center at aft midship position of container ship, yaw moment does not follow the sine curve law.
Key words: container ship     tunnel test     superstructure building     wind resistance coefficient     design draft
0 引　言

1 试验模型 1.1 船型简介

 图 1 试验模型及坐标系 Fig. 1 Test model and coordinate system
1.2 风洞试验

 图 2 集装箱设计吃水风阻试验 Fig. 2 Draft design resistance tunnel test of container ship
2 试验结果

 $C{F_X} = {F_X}/(\rho {A_f}{u^2}/2)\text{，}$ (1)
 $C{F_Y} = {F_Y}/(\rho {A_c}{u^2}/2)\text{，}$ (2)
 ${C_N} = N/(\rho {A_f}{u^2}L/2)\text{。}$ (3)

 图 3 不同风向角下纵向风阻系数曲线 Fig. 3 Longitudinal wind resistance coefficient curves under different wind direction

 图 4 不同风向角下横向风阻系数曲线 Fig. 4 Transverse wind resistance coefficient curves under different wind direction

 图 5 不同风向角下力矩曲线 Fig. 5 Moment curves under different wind direction

3 结　语

 [1] 蔡敬伟. 2017年全球集装箱船市场回顾与展望[J]. 世界海运, 2018, 41(3): 12-17. [2] 沈群章. 大型集装箱船外高桥水域强风中的调头靠泊操纵[J]. 世界海运, 2016, 39(6): 26-29. [3] 刘强, 谢伟, 段文洋, 等. 四种不同布置形式集装箱船风载荷计算研究[J]. 华中科技大学学报(自然科学版), 2013, 41(10): 95-99. [4] 蔡文山, 马卫星, 邓锐, 等. 不同集装箱布置下船舶风载荷数值仿真[J]. 中国航海, 2018, 41(2): 91-96. DOI:10.3969/j.issn.1000-4653.2018.02.019 [5] 罗少泽, 马宁, 平川嘉昭, 等. 大型集装箱船拖曳水池敞开式风场中风阻试验与数值计算[J]. 上海交通大学学报, 2016, 50(3): 389-394. [6] ANDERSEN I M V. Wind loads on post-panamax container ship[J]. Ocean Engineering, 2013, 58: 115. DOI:10.1016/j.oceaneng.2012.10.008 [7] 魏可可, 高霄鹏. 水面舰船风载荷系数研究[J]. 舰船科学技术, 2018, 40(17): 27-31+38. WEI Ke-ke, GAO Xiao-peng. Research on wind load factor of a surface ship[J]. Ship Science and Technology, 2018, 40(17): 27-31+38. [8] 刘亚冲, 胡安康, 韩凤磊, 等. 超大型集装箱船风载荷系数研究[J]. 武汉理工大学学报, 2014, 36(4): 80-85. [9] TOSHIFUMI Fujiwara, MICHIO Ueno, TADASHI Nimura. An estimation method of wind forces and moments acting on ships[C]//Mini Symposium on Prediction of Ship manoeuvring Performance. Tokyo: Japan Marine Dynamics Research Sub-Committee, 2001: 83−92. [10] HADDARA M R, GUEDES Soares C. Wind loads on marine structures[J]. Murine Structures, 1999, 12: 199-209. DOI:10.1016/S0951-8339(99)00023-4