﻿ 含贯穿粘脱复合材料加筋板轴压失效特性分析
 舰船科学技术  2020, Vol. 42 Issue (10): 11-16    DOI: 10.3404/j.issn.1672-7649.2020.10.003 PDF

1. 上海交通大学 海洋工程国家重点实验室，上海 200240;
2. 高新船舶与深海开发装备协同创新中心 船海协创中心，上海 200240

Failure characteristics of composite material stiffened panel with through debonding under axial compression
WANG Yi-wei1,2, YUAN Yu-chao1,2, TANG Wen-yong1,2
1. State Key Laboratory of Ocean Engineering, Shanghai Jiaotong University, Shanghai 200240, China;
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai 200240, China
Abstract: Composite materials have been widely used in marine engineering due to their advantages of high specific strength and corrosion resistance, and the stiffened panel is the basic component of ships and offshore structures. It is of great significance to investigate the debonding behaviors of composite materials stiffened panel and the influence of debonding defects on the structural buckling characteristics as well as bearing capacity. Based on the progressive damage method, the numerical analysis model is established in consideration of the damage between and within layers, and the numerical method proposed by this paper is validated against the axial buckling model test. The delamination and collapse behaviors of composite material stiffened panel with debonding defects are studied, and the bearing capacity variation and structural response characteristics are analyzed.
Key words: composite materials     stiffened panel     through debonding     damage evolution     axial compression
0 引　言

1 数值分析模型

1.1 复合材料层合板的层内损伤

1）纤维拉伸失效（ ${\sigma _{11}} \geqslant 0$

 ${\left( {\frac{{{\sigma _{11}}}}{{{X_T}}}} \right)^2} + \alpha {\left( {\frac{{{\tau _{12}}}}{{{S_L}}}} \right)^2} = 1 \text{，}$ (1)

2）纤维压缩失效（ ${\sigma _{11}} < 0$

 ${\left( {\frac{{{\sigma _{11}}}}{{{X_C}}}} \right)^2}{\rm{ = }}1 \text{，}$ (2)

3）基体拉伸失效（ ${\sigma _{22}} \geqslant 0$

 ${\left( {\frac{{{\sigma _{22}}}}{{{Y_T}}}} \right)^2} + {\left( {\frac{{{\tau _{12}}}}{{{S_L}}}} \right)^2} = 1\text{，}$ (3)

4）压缩失效（ ${\sigma _{22}} < 0$

 ${\left( {\frac{{{\sigma _{22}}}}{{2{S_T}}}} \right)^2} + \left[ {{{\left( {\frac{{{Y_C}}}{{2{S_T}}}} \right)}^2} - 1} \right]\frac{{{\sigma _{22}}}}{{{Y_C}}} + {\left( {\frac{{{\tau _{12}}}}{{{S_L}}}} \right)^2} = 1\text{。}$ (4)

Hashin失效准则可根据不同损伤类型选取相应的刚度折减系数，当某一铺层内某处出现某种失效类型时，该处相应的材料性能退化参数退化到零，从而能够更为精确地描述复合材料层合板内部的损伤演化过程。

1.2 复合材料层合板的层间损伤

 ${\left( {\frac{{{\sigma _3}}}{N}} \right)^2} + {\left( {\frac{{{\tau _1}}}{S}} \right)^2} + {\left( {\frac{{{\tau _2}}}{T}} \right)^2}{\rm{ = }}1\text{。}$ (5)

 ${G_{IC}} + \left( {{G_{IIC}} - {G_{IC}}} \right){\left( {\frac{{{G_{shear}}}}{{{G_T}}}} \right)^\eta } = {G_{TC}} \text{。}$ (6)

1.3 分析流程与建模方法

 图 1 渐进失效分析流程图 Fig. 1 Flow chart of progressive failure analysis
2 数值模型对比验证

2.1 算例尺寸及材料参数

 图 2 复合材料加筋板几何构形、边界条件示意图 Fig. 2 Geomotric configuration and boundary conditions of composite stiffened panel

2.2 复合材料加筋板的有限元模型

 图 3 复合材料加筋板的有限元模型 Fig. 3 Finite element model of composite stiffened panel
2.3 对比验证

 图 4 载荷-位移曲线 Fig. 4 Load-displacement curves

 图 6 面外位移-载荷曲线 Fig. 6 Out-of-plane displacement-load curves

 图 5 应变-载荷曲线 Fig. 5 Strain-load curves
3 含贯穿粘脱复合材料加筋板屈曲研究

3.1 脱粘缺陷

 图 7 脱粘形式（50%L为例） Fig. 7 Debonding form（50%L as an example）

 图 8 失效载荷随脱粘长度变化情况 Fig. 8 Failure load varies with debonding length

3.2 损伤演化

 图 9 应力云图与内聚力层破坏进程（10%L） Fig. 9 Von mises stress and failure process of cohesive layer（10%L）

 图 11 应力云图与内聚力层破坏进程（50%L） Fig. 11 Von mises stress and failure process of cohesive layer（50%L）

 图 10 应力云图与内聚力层破坏进程（20%L） Fig. 10 Von mises stress and failure process of cohesive layer（20%L）

4 结　语

1）本文模型能较好地模拟出复合材料加筋板的损伤演化过程和压溃行为，所得数值结果与试验观测吻合良好，模型的合理性得以验证。

2）对于含贯穿脱粘缺陷的复合材料加筋板，当脱粘长度较小时，加筋板极限强度会因为脱粘缺陷受到较大削弱；脱粘长度较大时，加筋板极限强度基本稳定，但结构更易轴压屈曲。

3）复合材料加筋板脱粘长度较小时，加筋板失效模式为筋条断裂或失稳后引发裂纹扩展；而脱粘长度较大时，加筋板结构发生整体屈曲和裂纹扩展2种方式叠加的失效模式。

 [1] GRAY, B. l.. An Introdution to composite materials[J]. Nanotechnology Magazine, IEEE, 2014, 8(1): 6-16. DOI:10.1109/MNANO.2014.2309495 [2] 欧阳天, 关志东, 谭日明, 等. 复合材料T型加筋板筋条冲击损伤及冲击后压缩行为试验[J]. 复合材料学报, 2018, 38(10): 95-103. [3] ATEVENS K A, RICCI R, Davies GAO. Buckling and post-buckling of composite structures[J]. Composites, 1995, 26(3): 189-199. DOI:10.1016/0010-4361(95)91382-F [4] 李丽. 高强度、高模量碳纤维复合材料拉伸性能测试方法的研究[J]. 理化检验: 物理分册. 2004, 40(7): 337-340. [5] COLLOMBET F, BONINI J, LATAILLADE J L. A three dimensional modeling of low velocity impact damage incomposite laminates[J]. International Joumal for Numerical Methods in Engineering, 1996, 39: 1491-1516. DOI:10.1002/(SICI)1097-0207(19960515)39:9<1491::AID-NME914>3.0.CO;2-2 [6] KUMAR D., SINGH S. B.. Effects of boundary conditions on buckling and postbuckling responses of composite laminate with various shaped cutouts[J]. Composite Structures, 2010, 92: 769-779. DOI:10.1016/j.compstruct.2009.08.049 [7] 易美琦. 层合板分层损伤等效模拟方法及剩余强度研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. [8] BENZEGGAGH M L, KENANE M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science & Technology, 1996, 56(4): 439-449. [9] 张浩宇, 何宇廷, 冯宇, 等. 先进复合材料薄壁加筋板轴压屈曲特性及后屈曲承载性能[J]. 航空材料学报, 2016, 36(4): 58-66.