舰船科学技术  2020, Vol. 42 Issue (8): 26-31    DOI: 10.3404/j.issn.1672-7649.2020.08.005   PDF    
波纹夹层板固有频率的一阶Zig-Zag理论计算方法
王小明1,2, 魏强1,2     
1. 中国舰船研究设计中心,湖北 武汉 430064;
2. 船舶振动噪声重点实验室,湖北 武汉 430064
摘要: 在波纹夹层板微振动时,认为面板不仅承受弯曲作用,还承受剪切作用;心层承受剪切作用,同时仅承受波纹母线方向的弯曲作用。在夹层板的上下面板和心层分别应用一阶Zig-Zag理论,根据波纹心层的具体形状,列出夹层板的几何方程。通过Hamilton原理,建立夹层板的微振动微分方程。根据边界条件,用双傅里叶级数的方法求解方程,确定特征值,求得夹层板的振动频率。经过算例验证,该方法计算的前8阶固有频率与有限元法或其他文献结果相吻合。
关键词: 波纹夹层板     固有频率     Zig-Zag理论     变分法     振动分析    
Calculation method on corrugated core panel natrural frequency applying first order Zig-Zag theory
WANG Xiao-ming1,2, WEI Qiang1,2     
1. China Ship Development and Design Center, Wuhan 430064, China;
2. National Key Laboratory on Ship Vibration and Noise, Wuhan 430064, China
Abstract: It is taken into account that corrugated core face sheets endure not only bending but also shearing, and core endure bending along corrugation generating line direction as well as shearing along double directions when the corrugated core panel tiny vibrates. Based on the core practical shape, geometry equations were demonstrated by applying first order Zig-zag theory to upper and lower face sheet and core. Tiny vibration diffrential equations were established according to Hamilton principle. Eigenvalue was determined and vibration frequency was calculated by solving the equations using double Fourier series according to boundary conditions. In the calculation example, the results of the first to eight order frequency of this proposal method are of good agreement with FEM or other literatures.
Key words: corrugated core panel     natrural frequency     Zig-Zag theory     variation principle     vibration analysis    
0 引 言

夹层板是由强度大的上下面板和密度较小的心层组成,通常上下面板可以是钢板,碳纤维或者玻璃钢等,心层可以是木材,铝蜂窝或者泡沫塑料。心层的设计还有一种思路来降低等效密度,可以把心层设计成空心的波纹状结构,通过粘结[1-2]或者激光焊接[3-4]与上下面板相连,这就是波纹夹层板(见图1)。这样组成的新结构具有比强度高、比刚度高的优点,经常被应用到航空航天工程,船舶海洋工程,建筑桥梁工程和车辆工程等。

图 1 波纹夹层板结构示意图 Fig. 1 Corrugated sandwich structure

对于夹层板固有频率的研究,最经典的著作是文献[5],其中以Hoff理论研究了夹层板的振动频率,分别研究了不同边界条件下,固有频率的计算方法。吴晖把夹层板看作正交异性体,借鉴文献[5]中的结论,认为垂直波纹方向的剪切刚度无限大,推导出固有频率的解析表达式[6];Hossein Zamanifar等运用精细切片法研究了夹层板的自由振动和强迫振动,通过等效参数,将三维的夹层板通过等效参数转化成二维正交异性板,求解了无量纲的自由振动频率,与前人的研究成果吻合一致[7]。Zig-Zag理论在复合材料或层合板领域应用很广泛[8-10]。白瑞祥等以3层均质复合材料(或等效成3层均质复合材料)夹层板为研究对象,引入一阶Zig-Zag理论,建立了夹层板自由振动的有限元模型,采用子空间迭代法求解自由振动固有频率[11]。对于上下面板之间是非连续介质的心层夹层板,目前采用一阶Zig-Zag理论来建立运动方程的文献很少。本文提出一种考虑波纹夹层板心层不连续形状的情况下,上下3层都应用一阶Zig-Zag理论建立夹层板的运动方程的方法。

1 振动微分方程

图2所示,波纹夹层板由上下面板和中间心层组成。在波纹夹层板中建立坐标系统。

图 2 夹层板坐标系统 Fig. 2 Coordinate system of corrugated sandwich

图中:tt为上面板厚度,tb为下面板厚度,tc为中间心层的厚度;心层的静高度为hc,心层的周期间距为lc。在线弹性理论分析,做以下基本假设:

1)夹层板的上下面板为普通薄板,考虑其抗剪作用,应用一阶剪切变形理论;

2)心层横向不可压缩,即假定 ${\varepsilon _z} = 0$ ${\sigma _z} = 0$

3)考虑心层的剪切作用,则心层中面法线在变形后保持为直线,但不再垂直于变形后的中面;

4)心层仅考虑其沿波纹方向的弯曲作用,忽略其垂直波纹方向的弯曲作用;

5)上下3层结构的面内位移沿板厚方向分段连续。

1.1 坐标系统与位移表达

根据假设1~假设4和图2中夹层板的坐标系统,上下面板的位移函数可以表示为:

${u_k}\left( {x,y,{z_k},t} \right) = {u_{ok}}\left( {x,y,t} \right) + {z_k}{\phi _{xk}}\left( {x,y,t} \right) {\text{,}}$ (1)
$ {v_k}\left( {x,y,{z_k},t} \right) = {v_{ok}}\left( {x,y,t} \right) + {z_k}{\phi _{yk}}\left( {x,y,t} \right) {\text{,}} $ (2)
${w_k}\left( {x,y,{z_k},t} \right) = w\left( {x,y,t} \right) {\text{。}}$ (3)

式中:kt,表示上面板;kb,表示下面板。

心层的位移函数可以表示为:

${u_c}\left( {x,y,{z_c},t} \right) = {u_{oc}}\left( {x,y,t} \right) + {z_c}{\phi _{xc}}\left( {x,y,t} \right) {\text{,}}$ (4)
${v_c}\left( {x,y,{z_c},t} \right) = {v_{oc}}\left( {x,y,t} \right) + {z_c}{\phi _{yc}}\left( {x,y,t} \right) {\text{,}}$ (5)
${w_c}\left( {x,y,{z_c},t} \right) = w\left( {x,y,t} \right) {\text{。}}$ (6)

其中: ${u_k}$ ${v_k}$ ${w_k}$ k=tb,以下表述与此同)分别表示上下面板的面内xyz 三个方向的位移函数; ${u_{0k}}$ ${v_{0k}}$ 分别表示上下面板中面内xy方向的位移函数, ${\phi _{xk}}$ ${\phi _{yk}}$ 分别表示上下面板中面法线在xz平面内的转角和上下面板中面法线在yz平面内的转角; ${z_k}$ 表示上下面板垂向坐标,原点分别对应上下面板的中面,向下为正方向。 ${u_c}$ ${v_c}$ 为心层在xy方向的位移函数; ${\phi _{xc}}$ ${\phi _{yc}}$ 分别表示心层中面法线在xz平面内的转角和在yz平面内的转角, ${z_c}$ 表示心层垂向坐标,原点位于心层的中面上,向下为正方向。 $w$ 为夹层板在z向的位移函数。坐标系统如图2所示。需要说明的是, ${\phi _{xk}}$ ${\phi _{yk}}$ ${\phi _{xc}}$ ${\phi _{yc}}$ 都是以x轴或y轴转向远离z轴的方向为正。

根据假设5,可以列出位移连续条件如下:

${u_t}\left( {x,y,{z_t} = \frac{{{t_t}}}{2}} \right) = {u_c}\left( {x,y,{z_c} = - \frac{{{h_c}}}{2}} \right) {\text{,}}$ (7)
${v_t}\left( {x,y,{z_t} = \frac{{{t_t}}}{2}} \right) = {v_c}\left( {x,y,{z_c} = - \frac{{{h_c}}}{2}} \right) {\text{,}}$ (8)
${u_b}\left( {x,y,{z_b} = - \frac{{{t_b}}}{2}} \right) = {u_c}\left( {x,y,{z_c} = \frac{{{h_c}}}{2}} \right) {\text{,}}$ (9)
${v_b}\left( {x,y,{z_b} = - \frac{{{t_b}}}{2}} \right) = {v_c}\left( {x,y,{z_c} = \frac{{{h_c}}}{2}} \right) {\text{。}}$ (10)

将式(1)~式(5)代入式(7)~式(10),求出:

${u_{ot}}\left( {x,y} \right) = {u_{oc}}\left( {x,y} \right) - \frac{{{h_c}}}{2}{\phi _{xc}}\left( {x,y} \right) - \frac{{{t_t}}}{2}{\phi _{xt}}\left( {x,y} \right) {\text{,}}$ (11)
${v_{ot}}\left( {x,y} \right) = {v_{oc}}\left( {x,y} \right) - \frac{{{h_c}}}{2}{\phi _{yc}}\left( {x,y} \right) - \frac{{{t_t}}}{2}{\phi _{yt}}\left( {x,y} \right) {\text{,}}$ (12)
${u_{ob}}\left( {x,y} \right) = {u_{oc}}\left( {x,y} \right) + \frac{{{h_c}}}{2}{\phi _{xc}}\left( {x,y} \right) + \frac{{{t_b}}}{2}{\phi _{xb}}\left( {x,y} \right) {\text{,}}$ (13)
${v_{ob}}\left( {x,y} \right) = {v_{oc}}\left( {x,y} \right) + \frac{{{h_c}}}{2}{\phi _{yc}}\left( {x,y} \right) + \frac{{{t_b}}}{2}{\phi _{yb}}\left( {x,y} \right) {\text{。}}$ (14)

将式(11)~式(14)代入式(1)和式(2),联合式(3)~式(6),则所有的位移函数都用心层的中面位移函数表达。

应用弹性理论的应变位移关系,对于上面板:

$\varepsilon _x^t = \frac{{\partial {u_t}}}{{\partial x}} = \frac{{\partial {u_{oc}}\left( {x,y} \right)}}{{\partial x}} - \frac{{{h_c}}}{2}\frac{{\partial {\phi _{xc}}\left( {x,y} \right)}}{{\partial x}} + \left( {{z_t} - \frac{{{t_t}}}{2}} \right)\frac{{\partial {\phi _{xt}}\left( {x,y} \right)}}{{\partial x}} {\text{,}}$ (15)
$\begin{split}\varepsilon _y^t = \frac{{\partial {v_t}}}{{\partial y}} =& \frac{{\partial {v_{oc}}\left( {x,y} \right)}}{{\partial y}} - \frac{{{h_c}}}{2}\frac{{\partial {\phi _{yc}}\left( {x,y} \right)}}{{\partial y}} + \left( {{z_t} - \frac{{{t_t}}}{2}} \right)\\& \frac{{{\partial ^2}w(x,y)}}{{\partial {y^2}}}\frac{{\partial {\phi _{yt}}\left( {x,y} \right)}}{{\partial y}}{\text{,}}\end{split} $ (16)
$\begin{split} \gamma _{xy}^t = & \frac{{\partial {u_t}}}{{\partial y}} + \frac{{\partial {v_t}}}{{\partial x}} = \frac{{\partial {u_{oc}}\left( {x,y} \right)}}{{\partial y}} - \frac{{{h_c}}}{2}\left( {\frac{{{\phi _{yc}}\left( {x,y} \right)}}{{\partial x}} + \frac{{\partial {\phi _{xc}}\left( {x,y} \right)}}{{\partial y}}} \right) + \\ & \left( {{z_t} - \frac{{{t_t}}}{2}} \right)\left( {\frac{{{\phi _{yt}}\left( {x,y} \right)}}{{\partial x}} + \frac{{\partial {\phi _{xt}}\left( {x,y} \right)}}{{\partial y}}} \right) {\text{,}}\\[-18pt] \end{split} $ (17)
$\gamma _{xz}^t = \frac{{\partial {u_t}}}{{\partial {z_t}}} + \frac{{\partial w}}{{\partial x}} = {\phi _{xt}}\left( {x,y} \right) + \frac{{\partial w}}{{\partial x}}{\text{,}}$ (18)
$\gamma _{yz}^t = \frac{{\partial {u_t}}}{{\partial {z_t}}} + \frac{{\partial w}}{{\partial x}} = {\phi _{yt}}\left( {x,y} \right) + \frac{{\partial w}}{{\partial y}}{\text{。}}$ (19)

对于下面板也可以类似推导。

对于心层,正应变和剪应变分别为:

$\varepsilon _x^c = \frac{{\partial {u_c}\left( {x,y,{z_c}} \right)}}{{\partial x}} = \frac{{\partial {u_{oc}}\left( {x,y} \right)}}{{\partial x}} + {z_c}\frac{{\partial {\phi _{xc}}\left( {x,y} \right)}}{{\partial x}}{\text{,}}$ (20)
$\begin{split}\gamma _s^c =& \left[ {\frac{{\partial {u_c}\left( {x,y,{z_c}} \right)}}{{\partial {z_c}}} + \frac{{\partial {w_c}\left( {x,y} \right)}}{{\partial x}}} \right]\sin \theta =\\&\left[ {{\phi _{xc}}\left( {x,y} \right) + \frac{{\partial w\left( {x,y} \right)}}{{\partial x}}} \right]\sin \theta{\text{,}} \end{split}$ (21)
$\gamma _{yz}^c = \frac{{\partial {v_c}\left( {x,y,z} \right)}}{{\partial {z_c}}} + \frac{{\partial {w_c}\left( {x,y} \right)}}{{\partial y}} = {\phi _{yc}}\left( {x,y} \right) + \frac{{\partial w\left( {x,y} \right)}}{{\partial y}}{\text{。}}$ (22)

其中, $\varepsilon _x^c$ $\gamma _s^c$ 为心层沿x方向的正应变和沿心层表面的剪应变, $\gamma _{yz}^c$ 为心层在yz平面内的剪应变。

1.2 物理方程

上下面板和心层的每一个构件材料,认为它是各向同性的,则由弹性理论可以求出应力。

$\sigma _x^k = \frac{E}{{1 - {\mu ^2}}}\left( {\varepsilon _x^k + \mu \varepsilon _y^k} \right){\text{,}}$ (23)
$\sigma _y^k = \frac{E}{{1 - {\mu ^2}}}\left( {\varepsilon _y^k + \mu \varepsilon _x^k} \right){\text{,}}$ (24)
$\tau _{xy}^k = \frac{E}{{2\left( {1 + \mu } \right)}}\gamma _{xy}^k{\text{,}}$ (25)
$\tau _{xz}^k = \frac{E}{{2\left( {1 + \mu } \right)}}\gamma _{xz}^k{\text{,}}$ (26)
$\tau _{yz}^k = \frac{E}{{2\left( {1 + \mu } \right)}}\gamma _{yz}^k{\text{。}}$ (27)

其中, $E,\mu $ 分别对应上下面板的弹性模量和泊松比。心层的应力同样求得如下:

$\sigma _x^c = {E_c}\varepsilon _x^c{\text{,}}$ (28)
$\tau _s^c = \frac{{{E_c}}}{{2\left( {1 + {\mu _c}} \right)}}\gamma _s^c{\text{,}}$ (29)
$\tau _{yz}^c = G_{yz}^c\gamma _{yz}^c{\text{。}}$ (30)

根据文献[12]和文献[13]的结论,心层yz平面的剪切弹性模量 $G_{yz}^c$ 可表达为:

$G_{yz}^c = \frac{{{E_c}{t_c}{{\sin }^2}\theta \cos \theta }}{{{h_c}}}{\text{。}}$ (31)
1.3 能量原理

哈密尔顿(Hamilton)原理提出稳定系统的动能和势能之差(动势)必然是最小值。对于振动分析的波纹夹层板而言,系统存在动能T和势能U,但是没有外力做功,势能仅包括系统的应变能。根据变分法,则应该使得

$\delta \left( {T - U} \right) = 0{\text{。}}$ (32)

系统的动能包括3部分,分别是上下面板动能和心层动能。

$T = {T_t} + {T_b} + {T_c}{\text{,}}$ (33)
$\small{T_k} = \frac{\rho }{2}\left\{ {{{\int_{ - {t_k}/2}^{{t_k}/2} {\left( {\frac{{\partial {u_k}}}{{\partial t}}} \right)} }^2}{\rm{d}}{z_k} + {{\int_{ - {t_k}/2}^{{t_k}/2} {\left( {\frac{{\partial {v_k}}}{{\partial t}}} \right)} }^2}{\rm{d}}{z_k} + {{\int_{ - {t_k}/2}^{{t_k}/2} {\left( {\frac{{\partial w}}{{\partial t}}} \right)} }^2}{\rm{d}}{z_k}} \right\}{\text{,}}$ (34)
$\begin{split}{T_c} = &\frac{{{\rho _c}}}{2}\left\{ {{{\int_{{z_c} - {t_c}/(2\cos \theta )}^{{z_c} + {t_c}/(2\cos \theta )} {\left( {\frac{{\partial {u_c}}}{{\partial t}}} \right)} }^2}{\rm{d}}{z_c} + {{\int_{ - {t_c}/2}^{{t_c}/2} {\left( {\frac{{\partial {v_c}}}{{\partial t}}} \right)} }^2}{\rm{d}}{z_c}}+\right.\\& \left.{{\int_{ - {t_c}/2}^{{t_c}/2} {\left( {\frac{{\partial w}}{{\partial t}}} \right)} }^2}{\rm{d}}{z_c} \right\}{\text{,}}\\[-18pt]\end{split}$ (35)

系统的势能主要是指构件的应变能,应变能也包括3部分,分别是上下面板应变能和心层应变能。

$U = {U_t} + {U_b} + {U_c}{\text{,}}$ (36)

其中:

$\begin{split} {U_k} = & \frac{1}{2}\smallint _{ - {t_k}/2}^{{t_k}/2}{\text{d}}{z_k}\int {\int_A {} } \hfill \\ & \left( {\sigma _x^k\varepsilon _x^k + \sigma _y^k\varepsilon _y^k + \tau _{xy}^k\gamma _{xy}^k + \tau _{xz}^k\gamma _{xz}^k + + \tau _{yz}^k\gamma _{yz}^k} \right){\text{d}}x{\text{d}}y \end{split} $ (37)
$\begin{split}{U_c} = &\frac{1}{2}\int\nolimits_{{z_c} - {t_c}/(2\cos \theta )}^{{z_c} + {t_c}/(2\cos \theta )} {{\rm{d}}{z_c}\iint\nolimits_A {\left( {\sigma _x^c\varepsilon _x^c + \tau _s^c\gamma _s^c} \right)dxdy}} + \\& \frac{1}{2}\int_{ - {h_c}/2}^{{h_c}/2} {{\rm{d}}{z_c}} \iint\limits_A {\tau _{yz}^c\gamma _{yz}^c{\rm{d}}x{\rm{d}}y}{\text{。}}\end{split}$ (38)

将式(33)~(38)代入式(32),应用变分法中的拉格朗日–欧拉方程,经过复杂的推导、运算,得出以下振动微分方程:

$\begin{split}& - \frac{1}{2}\rho t_b^2\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {t^2}}} + \frac{1}{2}\rho {h_c}\left( {{t_t} - {t_b}} \right)\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {t^2}}} + \frac{1}{2}\rho t_t^2\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {t^2}}} - \rho \left( {{t_t} + {t_b}} \right)\frac{{{\partial ^2}{u_{0c}}}}{{\partial {t^2}}} +\\& \frac{{Et_b^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {y^2}}} + \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {y^2}}} - \frac{{Et_t^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {y^2}}} +\\& \frac{{E\left( {{t_b} + {t_t}} \right)}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial {y^2}}} + \frac{{Et_b^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial x\partial y}} + \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 - \mu } \right)}} \frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial x\partial y}} -\\& \frac{{Et_t^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial x\partial y}} + \frac{{E\left( {{t_b} + {t_t}} \right)}}{{2\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial x\partial y}} + \frac{{Et_b^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {x^2}}} + \\&\left[ {\frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{2\left( {1 - {\mu ^2}} \right)}} + \frac{{{E_c}{t_c}{z_c}}}{{\cos \theta }}} \right] \frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {x^2}}} - \frac{{Et_t^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {x^2}}} + \\&\left[ {\frac{{E\left( {{t_b} + {t_t}} \right)}}{{1 - {\mu ^2}}} + \frac{{{E_c}{t_c}}}{{\cos \theta }}} \right]\frac{{{\partial ^2}{u_{0c}}}}{{\partial {x^2}}} = 0 {\text{,}}\\[-24pt] \end{split} $ (39)
$\begin{split}& - \frac{1}{2}\rho t_b^2\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {t^2}}} + \frac{1}{2}\rho {h_c}\left( {{t_t} - {t_b}} \right)\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {t^2}}} + \frac{1}{2}\rho t_t^2\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {t^2}}} -\\& \rho \left( {{t_t} + {t_b}} \right)\frac{{{\partial ^2}{v_{0c}}}}{{\partial {t^2}}} + \frac{{Et_b^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {y^2}}} + \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {y^2}}} -\\& \frac{{Et_t^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {y^2}}}+ \frac{{E\left( {{t_b} + {t_t}} \right)}}{{1 - {\mu ^2}}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {y^2}}} + \frac{{Et_b^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial x\partial y}} + \\&\frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 - \mu } \right)}} \frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial x\partial y}} - \frac{{Et_t^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial x\partial y}} + \frac{{E\left( {{t_b} + {t_t}} \right)}}{{2\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial x\partial y}} + \frac{{Et_b^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {x^2}}} + \\&\frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 + \mu } \right)}} \frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {x^2}}} - \frac{{Et_t^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {x^2}}} + \frac{{E\left( {{t_b} + {t_t}} \right)}}{{2\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {x^2}}} = 0 {\text{,}}\\[-14pt] \end{split} $ (40)
$\begin{split}& - \frac{{{E_c}t{}_c{{\sin }^2}\theta }}{{2\left( {1 + {\mu _c}} \right)\cos \theta }}{\varphi _{xc}} - \frac{1}{4}\rho {h_c}t_b^2\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {t^2}}} - \frac{1}{4}\rho h_c^2\left( {{t_t} + {t_b}} \right)\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {t^2}}} -\\& \frac{1}{4}\rho {h_c}t_t^2\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {t^2}}} + \frac{1}{2}\rho {h_c}\left( {{t_t} - {t_b}} \right)\frac{{{\partial ^2}{u_{0c}}}}{{\partial {t^2}}} +\frac{{E{h_c}t_b^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {y^2}}} +\\& \frac{{Eh_c^2\left( {{t_b} + {t_t}} \right)}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {y^2}}} +\frac{{E{h_c}t_t^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {y^2}}} + \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial {y^2}}} -\\& \frac{{{E_c}{t_c}{{\sin }^2}\theta }}{{2\left( {1 + {\mu _c}} \right)\cos \theta }}\frac{{\partial w}}{{\partial x}} +\frac{{E{h_c}t_b^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial x\partial y}} + \frac{{Eh_c^2\left( {{t_b} + {t_t}} \right)}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial x\partial y}} +\\& \frac{{E{h_c}t_t^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial x\partial y}} + \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial x\partial y}} + \frac{{E{h_c}t_b^2}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {x^2}}} +\\& \left[ {\frac{{Eh_c^2\left( {{t_b} + {t_t}} \right)}}{{4\left( {1 - {\mu ^2}} \right)}} + \frac{{{E_c}{t_c}z_c^2}}{{\cos \theta }} + \frac{{{E_c}t_c^3}}{{12{{\cos }^3}\theta }}} \right] \times\\& \frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {x^2}}} + \frac{{E{h_c}t_t^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {x^2}}} +\left[ {\frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{2\left( {1 - {\mu ^2}} \right)}} + \frac{{{E_c}{t_c}{z_c}}}{{\cos \theta }}} \right]\frac{{{\partial ^2}{u_{0c}}}}{{\partial {x^2}}} = 0{\text{,}} \end{split} $ (41)
$\begin{split}& - 2G_{yz}^c{h_c}{\varphi _{yc}} - \frac{1}{4}\rho {h_c}t_b^2\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {t^2}}} - \frac{1}{4}\rho h_c^2\left( {{t_t} + {t_b}} \right)\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {t^2}}} -\\& \frac{1}{4}\rho {h_c}t_t^2\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {t^2}}} +\frac{1}{2}\rho {h_c}\left( {{t_t} - {t_b}} \right)\frac{{{\partial ^2}{v_{0c}}}}{{\partial {t^2}}} - 2G_{yz}^c{h_c}\frac{{\partial w}}{{\partial y}} +\\& \frac{{E{h_c}t_b^2}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {y^2}}} + \frac{{Eh_c^2\left( {{t_b} + {t_t}} \right)}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {y^2}}} + \frac{{E{h_c}t_t^2}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {y^2}}} +\\& \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {y^2}}} + \frac{{E{h_c}t_b^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial x\partial y}} + \frac{{Eh_c^2\left( {{t_b} + {t_t}} \right)}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial x\partial y}} +\\& \frac{{E{h_c}t_t^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial x\partial y}} + \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial x\partial y}} + \frac{{E{h_c}t_b^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {x^2}}} + \\&\frac{{Eh_c^2\left( {{t_b} + {t_t}} \right)}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {x^2}}} + \frac{{E{h_c}t_t^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {x^2}}} + \frac{{E{h_c}\left( {{t_b} - {t_t}} \right)}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {x^2}}} = 0{\text{,}} \end{split} $ (42)
$\begin{split}& q\left( {x,y} \right) - \left[ {\rho \left( {{t_t} + {t_b}} \right) + \frac{{{\rho _c}{t_c}}}{{\cos \theta }}} \right]\frac{{{\partial ^2}w}}{{\partial {t^2}}} +\\& \frac{{E{t_b}}}{{2\left( {1 + \mu } \right)}}\left( {\frac{{\partial {\varphi _{xb}}}}{{\partial x}} + \frac{{\partial {\varphi _{yb}}}}{{\partial y}}} \right) + 2G_{yz}^c{h_c}\frac{{\partial {\varphi _{yc}}}}{{\partial y}} + \\&\frac{{E{t_t}}}{{2\left( {1 + \mu } \right)}}\left( {\frac{{\partial {\varphi _{xt}}}}{{\partial x}} + \frac{{\partial {\varphi _{yt}}}}{{\partial y}}} \right) + \left[ {2G_{yz}^c{h_c} + \frac{{E\left( {{t_b} - {t_t}} \right)}}{{2\left( {1 + \mu } \right)}}} \right]\frac{{{\partial ^2}w}}{{\partial {y^2}}} +\\& \frac{{{E_c}{t_c}{{\sin }^2}\theta }}{{2\left( {1 + {\mu _c}} \right)\cos \theta }} \times \frac{{\partial {\varphi _{xc}}}}{{\partial x}} +\\& \left[ {\frac{{E\left( {{t_b} + {t_t}} \right)}}{{2\left( {1 + \mu } \right)}}+ \frac{{{E_c}{t_c}{{\sin }^2}\theta }}{{2\left( {1 + {\mu _c}} \right)\cos \theta }}} \right]\frac{{{\partial ^2}w}}{{\partial {x^2}}} = 0 {\text{,}} \\[-18pt] \end{split} $ (43)
$\begin{split}& - \frac{{E{t_t}}}{{2\left( {1 + \mu } \right)}}{\varphi _{xt}} - \frac{1}{4}\rho {h_c}t_t^2\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {t^2}}} - \frac{1}{3}\rho t_t^3\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {t^2}}} + \frac{1}{2}\rho t_t^2\frac{{{\partial ^2}{u_{0c}}}}{{\partial {t^2}}} + \\&\frac{{E{h_c}t_t^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {y^2}}} + \frac{{Et_t^3}}{{6\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {y^2}}} - \frac{{Et_t^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial {y^2}}} -\\& \frac{{E{t_t}}}{{2\left( {1 + \mu } \right)}}\frac{{\partial w}}{{\partial x}} + \frac{{E{h_c}t_t^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial x\partial y}} + \frac{{Et_t^3}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial x\partial y}} - \\&\frac{{Et_t^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial x\partial y}} + \frac{{E{h_c}t_t^2}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {x^2}}} + \frac{{Et_t^3}}{{3\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial {x^2}}} -\\& \frac{{Et_t^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial {x^2}}} = 0 {\text{,}}\\[-18pt] \end{split} $ (44)
$\begin{split}& - \frac{{E{t_t}}}{{2\left( {1 + \mu } \right)}}{\varphi _{yt}} - \frac{1}{4}\rho {h_c}t_t^2\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {t^2}}} - \frac{1}{3}\rho t_t^3\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {t^2}}} + \frac{1}{2}\rho t_t^2\frac{{{\partial ^2}{v_{0c}}}}{{\partial {t^2}}} - \\&\frac{{E{t_t}}}{{2\left( {1 + \mu } \right)}}\frac{{\partial w}}{{\partial y}} + \frac{{E{h_c}t_t^2}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {y^2}}} + \frac{{Et_t^3}}{{3\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {y^2}}} - \frac{{Et_t^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {y^2}}} + \\&\frac{{E{h_c}t_t^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial x\partial y}} + \frac{{Et_t^3}}{{6\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xt}}}}{{\partial x\partial y}} - \frac{{Et_t^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial x\partial y}} + \frac{{E{h_c}t_t^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {x^2}}} +\\& \frac{{Et_t^3}}{{6\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yt}}}}{{\partial {x^2}}} - \frac{{Et_t^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {x^2}}} = 0 {\text{,}}\\[-18pt] \end{split} $ (45)
$\begin{split}& - \frac{{E{t_b}}}{{2\left( {1 + \mu } \right)}}{\varphi _{xb}} - \frac{1}{3}\rho t_b^3\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {t^2}}} - \frac{1}{4}\rho {h_c}t_b^2\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {t^2}}} - \frac{1}{2}\rho t_b^2\frac{{{\partial ^2}{u_{0c}}}}{{\partial {t^2}}} + \\&\frac{{Et_b^3}}{{6\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {y^2}}} + \frac{{E{h_c}t_b^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {y^2}}} + \frac{{Et_b^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial {y^2}}} - \frac{{E{t_b}}}{{2\left( {1 + \mu } \right)}}\frac{{\partial w}}{{\partial x}} +\\& \frac{{Et_b^3}}{{6\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial x\partial y}} + \frac{{E{h_c}t_b^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial x\partial y}} + \frac{{Et_b^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial x\partial y}} + \frac{{Et_b^3}}{{3\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial {x^2}}} + \\&\frac{{E{h_c}t_b^2}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial {x^2}}} + \frac{{Et_b^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial {x^2}}} = 0 {\text{,}}\\[-18pt] \end{split} $ (46)
$\begin{split}& - \frac{{E{t_b}}}{{2\left( {1 + \mu } \right)}}{\varphi _{yb}} - \frac{1}{3}\rho t_b^3\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {t^2}}} - \frac{1}{4}\rho {h_c}t_b^2\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {t^2}}} - \frac{1}{2}\rho t_b^2\frac{{{\partial ^2}{v_{0c}}}}{{\partial {t^2}}} - \\&\frac{{E{t_b}}}{{2\left( {1 + \mu } \right)}}\frac{{\partial w}}{{\partial y}} + \frac{{Et_b^3}}{{3\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {y^2}}} + \frac{{E{h_c}t_b^2}}{{4\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {y^2}}} + \frac{{Et_b^2}}{{2\left( {1 - {\mu ^2}} \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {y^2}}} +\\& \frac{{Et_b^3}}{{6\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xb}}}}{{\partial x\partial y}} + \frac{{E{h_c}t_b^2}}{{8\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{\varphi _{xc}}}}{{\partial x\partial y}} + \frac{{Et_b^2}}{{4\left( {1 - \mu } \right)}}\frac{{{\partial ^2}{u_{0c}}}}{{\partial x\partial y}} + \frac{{Et_b^3}}{{6\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yb}}}}{{\partial {x^2}}} +\\& \frac{{E{h_c}t_b^2}}{{8\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{\varphi _{yc}}}}{{\partial {x^2}}} + \frac{{Et_b^2}}{{4\left( {1 + \mu } \right)}}\frac{{{\partial ^2}{v_{0c}}}}{{\partial {x^2}}} = 0 {\text{。}}\\[-18pt] \end{split} $ (47)
2 边界条件与方程求解

对于简支的夹层板,其边界条件为:

x=0或a

${v_{0c}} = 0,\frac{{\partial {\phi _{xc}}}}{{\partial x}} = \frac{{\partial {\phi _{xk}}}}{{\partial x}} = 0,{\phi _{yc}} = {\phi _{yk}} = 0,w = 0,\frac{{{\partial ^2}w}}{{\partial {x^2}}} = 0{\text{,}}$ (48)

y=0或b

${u_{0c}} = 0,{\phi _{xc}} = {\phi _{xk}} = 0,\frac{{\partial {\phi _{yc}}}}{{\partial x}} = \frac{{\partial {\phi _{yk}}}}{{\partial x}} = 0,w = 0,\frac{{{\partial ^2}w}}{{\partial {y^2}}} = 0{\text{。}}$ (49)

根据边界条件式(48)和式(49),可以取双傅里叶级数为式(39) ~ 式(47)的解,则

${u_{0c}} = \sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {{u_{mn}}\cos \frac{{m\text{π} x}}{a}} } \sin \frac{{n\text{π} y}}{b}{e^{i\varpi t}}{\text{,}}$ (50)
${v_{0c}} = \sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {{v_{mn}}\sin \frac{{m\text{π} x}}{a}} } \cos \frac{{n\text{π} y}}{b}{e^{i\varpi t}}{\text{,}}$ (51)
${\phi _{xc}} = \sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {{\phi _{xmn}}\cos \frac{{m\text{π} x}}{a}} } \sin \frac{{n\text{π} y}}{b}{e^{i\varpi t}}{\text{,}}$ (52)
${\phi _{yc}} = \sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {{\phi _{ymn}}\sin \frac{{m\text{π} x}}{a}} } \cos \frac{{n\text{π} y}}{b}{e^{i\varpi t}}{\text{,}}$ (53)
$w = \sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {{w_{mn}}\sin \frac{{m\text{π} x}}{a}} } \sin \frac{{n\text{π} y}}{b}{e^{i\varpi t}}{\text{,}}$ (54)
${\phi _{xk}} = \sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {{\phi _{xkmn}}\cos \frac{{m\text{π} x}}{a}} } \sin \frac{{n\text{π} y}}{b}{e^{i\varpi t}}{\text{,}}$ (55)
${\phi _{yk}} = \sum\limits_{m = 1}^\infty {\sum\limits_{n = 1}^\infty {{\phi _{ykmn}}\sin \frac{{m\text{π} x}}{a}} } \cos \frac{{n\text{π} y}}{b}{e^{i\varpi t}}{\text{。}}$ (56)

将式(50)~式(56)代入式(39)~式(47),然后比较两边的系数,则可以列出关于 ${u_{mn}}$ ${v_{mn}}$ ${\phi _{xmn}}$ ${\phi _{ymn}}$ w ${\phi _{xkmn}}$ ${\phi _{ykmn}}$ 的方程组,要使得这些系数有非零解,必然使得系数行列式为零。这个系数行列式就是关于固有角频率 $\varpi $ 的十八次多项式,解出这个十八次方程,取最小的正根就是所要求的固有角频率,则固有频率 $f = \varpi /2\text{π} $

3 方法验证

夹层板四边简支,长边a=2 000 mm,短边b=1 500 mm,上下面板厚度tt=tb=3 mm,心层厚度tc=2 mm,心层静高度hc=40 mm,心层周期间距lc=50 mm,上下面板和夹心都是同样材料,弹性模量E=Ec=2.1×105 MPa,泊松比 $\mu = {\mu _c} = 0.3$ 。计算其横向微振动的固有频率。

为了形成对比,验证方法的准确性,分别用4种方法分别计算这个算例。

1)方法1

按照文献[5]所列公式计算固有频率(即Hoff理论),不过其中的剪切刚度不能采用连续介质心层的公式,而是采用等效剪切刚度,即采用式(56);

2)方法2

按照文献[6]中所列公式求解(即简化的Reisser理论),其中的剪切刚度也是采用方法1中的等效剪切刚度;

3)方法3

采用Ansys软件,用shell181单元模拟面板和心层,三维有限元计算固有频率;

4)方法4

本文方法。

表1列出了这4种方法计算的前9阶固有频率。从表1看出关于前8阶固有频率,上述4种方法的计算结果都非常接近,误差小于10%。因此本文的计算方法是有效可信的。

$C = G_{yz}^c{\left( {{h_c} + {t_t}} \right)^2}/{h_c} = {E_c}{t_c}{\sin ^2}\theta \cos \theta {\left( {{h_c} + {t_t}} \right)^2}/h_c^2{\text{。}}$ (57)
表 1 各种方法关于前9阶频率的计算结果 Tab.1 Calculation results of freconcy from above methods
4 面板剪切作用的体现

当面板厚度较小的时候,忽略面板的剪切作用造成的误差是很小的。但是当面板厚度增加,剪切作用就表现比较明显。以第4节中算例的参数为基础,固定其他变量,分别以面板厚度和心层厚度为自变量,一阶频率为因变量,图3为不同方法计算的夹层板一阶频率随面板厚度变化曲线(上下面板相等,且同步变化),图4为不同方法计算的夹层板一阶频率随心层厚度变化曲线。

图 3 面板厚度与一阶频率关系曲线 Fig. 3 Face sheet thinkness and first order frequency relationship curves

图 4 心层厚度与一阶频率关系曲线 Fig. 4 Core sheet thinkness and first order frequency relationship curves

图3图4看出,面板厚度较小,不同方法计算的结果差别很小,面板厚度大于5 mm后,差别则很明显。同时,因为各类方法都考虑了心层的剪切作用,不管心层厚度如何变化,不同计算方法计算的固有频率都很接近。

5 结 语

通过应用一阶Zig-zag理论,同时考虑心层的实际形状,建立波纹夹层板的振动微分方程。用算例验证了本方法计算的前8阶固有频率的计算误差都在10%以内。

波纹夹层板面板板厚较小,忽略面板剪切作用的影响,导致的计算误差可以忽略;当面板厚度大于心层厚度1/8时,则误差是明显的,并且厚度越大,误差也越大。

因为Hoff理论中考虑了心层的剪切作用,因此波纹心层厚度的增加,不管是用Hoff理论计算还是简化的Hoff理论计算,都与本文方法计算结果极为接近。

参考文献
[1]
KNOX.E.COWLING.M, M.J. Adhesively bonded steel corrugated core sandwich construction for marine application[J]. Marine Structure, 1998(11): 185-204.
[2]
Ye YU, Wen-bin Hou. Elastic constants for adhesively bonded corrugated core sandwich panels[J]. Composite Structures, 2017(176): 449-459.
[3]
KUJALA.P ,ROMANOFF. J . All steel sandwich panels – design challenges for practical applications on ships[C]. 9th Symposium on Practical Design of Ships and Other Floating Structures.
[4]
RAJAPAKSE Y D S, HUI D. Marine composite and sandwich structures[J]. Composites: Part B, 2008, 39: 1-4.
[5]
中科院北京力学研究所. 夹层板的弯曲稳定和振动[M]. 北京: 科学出版社, 1977.
[6]
吴晖, 俞焕然. 四边简支正交各向异性波纹型夹心矩形夹层板的固有频率[J]. 应用数学和力学, 2001, 22(9): 919-926.
WU Hui, Yu Huan-ran. Natural frequency for rectangular orthotropic corrugated_core sandwich plates with all edges simply_supported[J]. Applied Mathematics and Mechanics, 2001, 22(9): 919-926. DOI:10.3321/j.issn:1000-0887.2001.09.005
[7]
ZAMANIFAR H, SARRAMI-FOROUSHANI S, et al. Static and dynamic analysis of corrugated-core sandwich plates using finite strip method[J]. Engineering structures, 2019(183): 30-51.
[8]
ICARD U, SOLA F. Assessment of recent Zig-Zag theories for laminated and sandwich structure[J]. Composites Part B, 2019(97): 26-52.
[9]
FANG Taoxie, Yegao QU, et al. Nolinear areothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory[J]. International Journal of Mechanical Sciences, 2019(150): 226-237.
[10]
AZHARI F, BOROOMAND B, et al.. Exponential basis function in the solution of laminated plates using a higer-order Zig-Zag theory[J]. Composite Structures, 2013(105): 398-407.
[11]
白瑞祥, 张志锋, 陈浩然. 基于Zig-Zag变形假定的复合材料夹层板的自由振动[J]. 力学季刊, 2004, 25(4): 528-534.
BAI Rui-xiang, ZHANG Zhi-feng, CHEN Hao-ran. Free vibration of composite sandwich plates based on Zig-Zag deformation assumption[J]. Chinese Quarterly of Mechanics, 2004, 25(4): 528-534. DOI:10.3969/j.issn.0254-0053.2004.04.015
[12]
何力. 船舶板架结构动力优化设计方法研究[D]. 武汉: 华中科技大学. 2011.
HE Li. Dynamic Optimization of Ship Grillages[D]. Wuhan: Huazhong University of Science and Technology. 2011.
[13]
Hong-xia WANG, SAMUEL W.Chung.. Equivalent elastic constants of truss core sandwich plates[J]. Journal of Pressure Vessel Technology, 2011(133): 041203-1-041203-6.