﻿ 螺旋桨根部负荷对毂涡结构影响分析
 舰船科学技术  2020, Vol. 42 Issue (6): 34-38    DOI: 10.3404/j.issn.1672-7649.2020.06.007 PDF

1. 上海斯玛德大推螺旋桨设计有限公司，上海 200011;
2. 中国船舶科学研究中心，江苏 无锡 214082

Analysis of vortex structure in propeller root wake
ZHAO Peng-li1,2
1. Shanghai Marin Propeller Design Co., Ltd., Shanghai 200011, China;
2. China Ship Scientific Research Center, Wuxi 214082, China
Abstract: The propeller radial circulation distribution and hub vortex energy recycling is one of the important subjects in propeller design. To research the influence on hub vortex structure, the RANS method was adopted to simulate the steady propeller wake. According to the comparisons of CFD simulation and the results of LDV measurement, the calculation results are reliable. From the analysis of three different radial circulation distribution propellers, the differences of vortex structure were declared, and the relationship of propeller root load and hub vortex structure was discussed.
Key words: propeller     hub vortex     radial circulation distribution     RANS     LDV
0 引　言

1 CFD模拟方法 1.1 数值方法

1.2 计算模型和边界条件

 图 1 螺旋桨三维模型 Fig. 1 3D model of the propeller

1.3 计算网格

2 数值模拟验证

 图 2 螺旋桨尾流场CFD模拟与LDV测量周向平均速度结果对比 Fig. 2 Comparison of propeller circumferential average velocity between CFD

 图 3 螺旋桨尾流场CFD模拟与LDV测量周向速度分布结果对比 Fig. 3 Comparison of propeller circumferential velocity distribution between CFD simulation and LDV measurement
3 桨叶负荷分布

 图 4 归一化的径向环量分布（x/R=0.16） Fig. 4 Normalized radial circulation distribution (x/R=0.16)
 $Z\varGamma = r\oint {{v_t}\mathrm d\theta }\text{。}$ (1)

4 结果分析 4.1 毂涡形态

 图 5 中纵剖面（Z=0）轴向涡量Ωa分布及涡线 Fig. 5 Axial vorticity Ωa distribution and vortex line in the middle section (Z=0)

 图 6 中纵剖面（Z=0）压力分布 Fig. 6 Pressure distribution in the middle section (Z=0)

A桨根部负荷很重，毂涡及低压区均从桨毂端面处产生，B桨桨毂区域基本不存在毂涡及低压区，而C桨的根部负荷居中，也更接近普通民船螺旋桨，此时的低压区距离壁面存在一定距离，这一现象应该是由旋转速度、桨叶根涡和端面分离流动共同作用导致的。

4.2 轴向涡通量发展

 图 7 轴向涡通量沿轴向位置的变化 Fig. 7 Variation of axial vortex flux along axial position

 图 8 与毂涡环量相等的轴向涡直径变化 Fig. 8 Variation of axial vortex diameter the vortex flux of which equal to hub vortex ring
 ${Q_a} = \int\nolimits_s {{{\varOmega }} \cdot {\rm d}{{s}}} = \int\nolimits_0^1 {\int\nolimits_0^{2{\text{π}} } {{\varOmega _a}} } {\rm d}\theta {\rm d}r \text{，}$ (2)
 $\int\nolimits_S {{{\varOmega }} \cdot {\rm d}{{s}}} = \int\nolimits_L {{{v}} \cdot {\rm d}{{l}}}\text{。}$ (3)
4.3 毂涡区域速度分布

 图 9 桨毂后方周向平均速度分布 Fig. 9 The average circumferential velocity distribution behind the propeller hub
5 结　语

 [1] LERBS H W. Moderately loaded propellers with a finite number of blades and an arbitrary distribution of circulations[J]. Transactions - Society of Naval Architects and Marine Engineers, 1952, 60: 73-123. [2] KERWIN J E, LEOPOLD R. A design theory for subcavitaing propellers[C]// SNAME 1964. [3] 孙文愈. 螺旋桨性能分析与优化设计中桨毂的影响分析[J]. 中国造船, 2016, 57(1): 19-29. DOI:10.3969/j.issn.1000-4882.2016.01.003 [4] BRIZZOLARA S, GAGGERO S, GRASSI D. Hub effect in propeller design and analysis [C]// Third International Symposium on Marine Propulsors, Australia, 2013. [5] HONG FANGWEN, DONG SHITANG. Numerical analysis for circulation distribution of propeller blade[J]. Journal of Hydrodynamics, 2010, 22(4): 488-493. DOI:10.1016/S1001-6058(09)60080-9 [6] SHIN K W, ANDERSEN P. CFD study on effective wake of conventional and tip-modified propellers [C]// 31st Symposium on Naval Hydrodynamics, America, 2016. [7] JESSUP S D. An experimental investigation of viscous aspects of propeller blade flow[D]. The Catholic University of America, 1989. [8] WANG M H. Hub effects in propeller design and analysis[D]. Cambridge: Massachusetts Institute of Technology, 1985. [9] KUMAR P, MAHESH K. Large eddy simulation of propeller wake instabilities[J]. Journal of Fluid Mech, 2017, 814: 361-396. DOI:10.1017/jfm.2017.20 [10] FELLI M, ROBERTO C, GUJ G. Experimental analysis of the flow field around a propeller-rudder configuration[J]. Exp Fluids, 2009, 46: 147-164. DOI:10.1007/s00348-008-0550-0 [11] FELLI M, CAMUSSI R, DIFELICE F. Mechanisms of evolution of he propeller wake in the transition and far fields[J]. Journal of Fluid Mech, 2011, 682: 5-53. DOI:10.1017/jfm.2011.150 [12] 李鹏程, 邓丽丽, 韩用波. 螺旋桨毂帽鳍设计新方法[J]. 船海工程, 2011(6). DOI:10.3963/j.issn.1671-7953.2011.06.036 [13] 李鑫. 桨后节能舵球的水动力性能分析[D]. 哈尔滨: 哈尔滨工程大学, 2009. [14] 高德宝. 消涡轮节能装置的机理分析及效果论证评估[D]. 无锡: 中国船舶科学研究中心, 2015. [15] LI PENGCHENG, ZHANG GUOPING, ZHOU WEIXIN. LDV measurements of flow field of propeller with PBCF for CFD validation [C]// Advanced Maritime Engineering Conference, Taipei, 2012: GT-12.