﻿ 鱼雷转缸式斜盘发动机有限元分析
 舰船科学技术  2020, Vol. 42 Issue (2): 176-180 PDF

Finite element analysis of swashplate revoloving cylinder engine
LI Xin, YANG Cheng-shi, PENG Bo
The 705 Research Institute of CSIC, Xi′an 710065, China
Abstract: Based on ANSYS/Mechanical, the finite element model of the Swashplate Revoloving Cylinder engine is established, and the stress and strain distribution of the engine and valve seat are obtained. Taking the engine as whole is more comprehensive and accurate than the traditional method. The analysis shows that the stiffness of the engine support frame should be properly increased in the engine design, so as to improve the running stability of the engine and ensure that there is no interference between the main shaft and the oblique shaft. The interference between the seat and the cylinder block is 0.04 mm-0.06 mm, which is beneficial to the stress distribution of the valve seat. The results obtained provide a basis for the engineering design of the engine.
Key words: swashplate revoloving cylinder     finite element model     stress     strain     stiffness
0 引　言

1 转缸式斜盘活塞发动机

 图 1 发动机结构简图 Fig. 1 Engine structure sketch
2 发动机有限元分析

2.1 发动机的受力分析

 \left\{ \begin{aligned} &{{I_1}\frac{{{\rm d}{m_j}}}{{{\rm d}\theta }} - I\frac{{{\rm d}{m_p}}}{{{\rm d}\theta }} = \frac{{{\rm d}U}}{{{\rm d}\theta }} + p\frac{{{\rm d}V}}{{{\rm d}\theta }} + \frac{{{\rm d}{Q_w}}}{{{\rm d}\theta }}}{\text{，}}\\ &{\frac{{{\rm d}m}}{{{\rm d}\theta }} = \frac{{{\rm d}{m_j}}}{{{\rm d}\theta }} - \frac{{{\rm d}{m_p}}}{{{\rm d}\theta }}}{\text{，}}\\ &{\frac{{{\rm d}V}}{{{\rm d}\theta }} = \frac{{{V_c}}}{S} \bullet \frac{v}{{360{n_0}}}}{\text{，}}\\ &{\frac{{{\rm d}{m_x}}}{{{\rm d}\theta }} = \left\{\!\!\!\! {\begin{array}{*{20}{l}} {\dfrac{{{a_g}{A_{jp}}{p_s}}}{{{n_0}\sqrt {{T_s}} }}{\text{，}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\dfrac{{{p_x}}}{{{p_s}}} > {\kappa _\kappa }}{\text{，}}\\ {\dfrac{{{b_g}{A_{jp}}{p_s}}}{{{n_0}\sqrt {{T_s}} }}{{\left(\dfrac{{{p_x}}}{{{p_s}}}\right)}^{\frac{1}{\kappa }}}\sqrt {1 - {{\left( {\frac{{{p_x}}}{{{p_s}}}} \right)}^{\frac{{\kappa - 1}}{\kappa }}}}{\text{，}} \;\;\;\;\;\;\;\;\dfrac{{{p_x}}}{{{p_s}}} \leqslant {\kappa _\kappa }} {\text{，}} \end{array}} \right.}\\ &{\frac{{{\rm d}{m_p}}}{{{\rm d}\theta }} = \frac{{{\rm d}{m_{hl}}}}{{{\rm d}\theta }} + \frac{{{\rm d}{m_{pq}}}}{{{\rm d}\theta }}}{\text{。}} \end{aligned} \right. (1)

 图 2 缸内压力随转角变化 Fig. 2 Cylinder pressure changes with the rotation angle
2.2 模型处理

2.3 边界条件

1）发动机工作过程中，气缸内依次进行着进气、膨胀、预排气、排气、压缩、预进气6个热力过程。选取发动机主轴70°转角处6个缸的缸内压力（见图2表1）作为边界条件施加在气缸体上[7-8]，同时在斜轴上划分6个区域分别施加对应缸号下的缸内压力；

2）施加燃烧室燃气通道的反冲压力以及冷却水压力；

3）阀座的进气道施加燃气压力；

4）阀座锥面和缸体锥面上施加初始过盈量，分别为0 mm，0.04 mm，0.06 mm，0.08 mm，0.12 mm；

5）阀座内部圆孔表面和衬套外表面初始状态下闭合间隙，使其初始状态为刚好接触；

6）阀座的后端面和缸体端面初始状态下闭合间隙，使其初始状态为刚好接触；

7）根据发动机和隔板在动力舱段上的支撑和固定方式，在隔板的支撑圆柱面上施加圆柱约束，在端盖后端的异型螺柱上施加固定约束。

2.4 发动机整机刚度分析

 图 3 隔板和发动机整机支撑框架变形 Fig. 3 Deformation of diaphragm and engine support frame

 图 4 主轴和斜轴干涉情况 Fig. 4 Interference between principal axis and oblique axis

 图 5 增加刚度后支撑框架变形 Fig. 5 Deformation of braced frame with increased stiffness

 图 6 增加刚度后主轴和斜轴干涉情况 Fig. 6 The interference between principal axis and oblique axis

2.5 阀座的强度分析

 图 7 过盈量为0 Fig. 7 The interference is 0

 图 8 过盈量为0.04 mm Fig. 8 The interference is 0.04 mm

 图 9 过盈量为0.06 mm Fig. 9 The interference is 0.06 mm

 图 10 过盈量为0.08 mm Fig. 10 The interference is 0.08 mm

 图 11 过盈量为0.12 mm Fig. 11 The interference is 0.12 mm

3 结　语

1）在发动机设计时应适当增加隔板和发动机支撑框架的刚度，提高发动机的运转平稳性，并保证主轴和斜轴之间不产生干涉；

2）选定阀座和缸体之间的过盈量为0.04～0.06 mm有利于石墨板的应力分布。

 [1] 万荣华, 李鑫, 彭博, 等. 鱼雷活塞发动机高压单层气缸套设计[J]. 鱼雷技术, 2014, 22(3): 200-203. WAN Rong-hua, LI Xin, PENG Bo, et al. Design of single layer cylinder sleeve under high pressure for torpedo piston engine[J]. Torpedo Technology, 2014, 22(3): 200-203. [2] 赵金凤, 胡欲立, 周鹏. 旋转配气机构有限元分析[J]. 鱼雷技术, 2007, 15(3): 47-50. ZHAO Jin-feng, HU Yu-li, ZHOU Peng. Finite element analysis of rotarysteam-distributing valves[J]. Torpedo Technology, 2007, 15(3): 47-50. DOI:10.3969/j.issn.1673-1948.2007.03.013 [3] NIE Y. Notice of retraction finite element modeling and analysis for key parts of a new type internal combustion engine[C]// Computer Application and System Modeling (ICCASM), 2010 International Conference on. IEEE, 2010: V8-181-V8-184. [4] 万荣华, 彭博, 何长富. 活塞发动机鱼雷热动力系统工作温度建模[J]. 鱼雷技术, 2002, 10(4): 6-9. WAN Ronghua, PENG Bo, HE Changfu. Modelling of operating temperature in torpedo thermal power systemwith piston engine[J]. Torpedo Technical, 2002, 10(4): 6-9. [5] 姚倡锋, 钱志博. 基于有限元法对鱼雷摆盘发动机活塞温度场和 应力场的仿真研究[J]. 鱼雷技术, 2002, 10(1): 32-34. YAO Cangfeng, QIAN Zhi-bo. A Study of Simulation on the Pistons Temperature and Stress Fields of Swashplate Engine with Finite Element Method[J]. Torpedo Technology, 2002, 10(1): 32-34. [6] 陈纬, 赵霞. 辊道装配过盈配合有限元分析[J]. 机械工程与自动化, 2011(2): 93-95. DOI:10.3969/j.issn.1672-6413.2011.02.034 [7] 马世杰. 鱼雷热动力装置设计原理[M]. 北京: 兵器工业出版社, 1992. [8] 李鑫, 王志刚, 万荣华, 等. 基于虚拟样机技术的鱼雷周转斜盘发动机动力学分析[J]. 鱼雷技术, 2011, 19(4): 285-289. LI Xin, WANG Zhi-gang, WAN Rong-hua, et al. Dynamic analysis of torpedo swashplate engine based on virtual prototype technology[J]. Torpedo Technology, 2011, 19(4): 285-289. DOI:10.3969/j.issn.1673-1948.2011.04.011