﻿ 海缆船定位系统设计
 舰船科学技术  2020, Vol. 42 Issue (2): 170-175 PDF

Positioning system design of cable-laying vessel
MAO Jian-hui, WEI Zhi-yuan
Marine Design and Research Institute of China, Shanghai 200011, China
Abstract: With the maturity of wind power generation technology, the installed capacity and scale of coastal wind farms in China are also growing. In recent years, as a complementary operation of wind farm construction, cable-laying vessels have attracted more and more attention of the industry. In order to meet the needs of submarine cable laying and maintenance, modern cable-laying vessels are generally equipped with positioning systems. Taking a 5000t cable-laying vessel as an example, this paper introduces the 8-point mooring positioning system, dynamic positioning DP-1 system and the design of traction winch system by calculating and analyzing the environmental forces under high-speed sea conditions and the special requirements of route laying and fix-point maintenance. By calculating the positioning capability of several positioning systems under different sea conditions, readers can understand that the positioning system of cable-laying vessels should select reasonable and feasible forms according to different operational requirements and sea conditions, taking into account the cost budget, project cycle and so on. Unlike the conventional ocean-going cable-laying vessel, the configuration of positioning system can be effectively reduced by using lateral cable laying operation. Through the dynamic positioning scheme of diesel engine directly driving suspended full rotary rudder propeller on deck, a new solution is provided for the modification of adding dynamic positioning system to ocean engineering operation ship.
Key words: cable-laying vessel     mooring positioning     dynamic positioning     cable laying     cable repairing
0 引　言

1 概　述

 图 1 锚泊定位和动力定位系统布置 Fig. 1 Mooring positioning and dynamic positioning system layout

2 环境力计算

 图 2 风速13.8 m/s时的风载荷 Fig. 2 Wind load at rate of 13.8 m/s

 图 4 流速3 kn时的流载荷 Fig. 4 Curruent load at rate of 3 kn

 图 5 海缆埋设作业方向示例 Fig. 5 Example of laying direction of submarine cable

 $\begin{split} {{F}}_{\text{绞车拉力}}=\,&({{F}}_{\text{埋设犁拖曳力}}+{{F}_{\text{风力}}}+\\ &{{F}_{\text{波浪二阶漂移力}}}) \times {{k}}{\text{。}} \end{split}$ (1)

 图 3 有义波高1.5 m时的波浪载荷 Fig. 3 Wave load at wave height of 1.5 m

（150+148+22）×1.4=450 kN。

3 锚泊系统设计 3.1 锚泊定位系统配置

 图 6 8点锚泊定位示意 Fig. 6 8-point mooring positioning diagram

3.2 锚泊定位能力计算

 图 7 移船布缆作业工况锚泊定位系统的定位能力 Fig. 7 Positioning capacity of anchoring positioning system under cable laying condition

 图 8 定点修缆作业工况锚泊定位系统的定位能力 Fig. 8 Positioning capacity of anchoring positioning system under cable repairing condition

1）在移船布缆作业工况下，在2 kn流速条件下锚泊定位系统可实现260°范围的定位；在3 kn流速条件下锚泊定位系统能实现100°范围的定位（在此情况下，可以利用牵引绞车系统辅助，以提高其作业能力）。

2）在定点维修作业工况下，在3.5 kn流速条件下锚泊定位系统能实现360°全浪向定位；在4 kn流速条件下锚泊定位系统能实现200°范围的定位，在5 kn流速条件下锚泊定位系统能实现100°范围的定位。

4 动力定位系统设计 4.1 动力定位能力计算

 图 9 动力定位计算的坐标系统和推进器布置图 Fig. 9 Coordinate system and propeller layout for dynamic positioning calculation

1）布缆工况下的计算结果如图10图11所示。

 图 10 布缆工况的抗风能力（流速3 kn） Fig. 10 Wind resistance capacity under cable laying condition (rate of 3 kn)

 图 11 布缆工况的抗风能力（流速4 kn） Fig. 11 Wind resistance capacity under cable laying condition (rate of 4 kn)

2）接续工况下的计算结果如图12图13所示。

 图 12 接续工况的抗风能力（流速4 kn） Fig. 12 Wind resistance capacity under cable repairing condition (rate of 4 kn)

 图 13 接续工况的抗风能力（流速3 kn） Fig. 13 Wind resistance capacity under cable repairing condition (rate of 3 kn)

4.2 动力及推进系统选型比较

 图 14 悬挂式舵桨方案 Fig. 14 Scheme of suspended rudder propeller

4.3 动力定位的控制系统

5 结　语

1）应根据实际作业需求、造价预算、工程周期，选择合理可行的定位系统形式。

2）不同的定位形式适应不同的作业需要，如牵引绞车系统适合海况条件良好时的海缆埋设作业，动力定位系统适合一般海况条件下的海缆埋设作业，锚泊定位系统适合海缆维修接续作业以及恶劣海况条件下的待机自存。

3）本船采用的柴油机直接驱动悬挂式全回转舵桨的动力定位方案，为海洋工程作业船增加动力定位系统的改造提供了新的解决方案。

1）本船采用柴油机驱动的悬挂式全回转舵桨作为动力定位推进器方案，需要重点研究动力定位的控制策略，如何通过柴油机调速改变输出功率，以及通过转动全回转舵桨使推进器发出的推力满足动力定位的要求，使柴油机功率利用更合理。

2）本船动力定位等级虽然初始设计为DP-1级，但由于4套柴油机和推进器完全相互独立，因此可根据需要进一步升级为DP-2动力定位系统。

3）本船动力定位系统、锚泊定位系统以及牵引绞车系统都是相对独立的系统，能否将不同系统结合在一起，以进一步提高定位系统的能力和可靠性，值得下一步深入开展研究。

 [1] 吴爱国, 袁舟龙, 公言强, 等. 国内海底电缆深埋敷设施工技术综述[J]. 浙江电力, 2015(3): 57-62. DOI:10.3969/j.issn.1007-1881.2015.03.018 [2] 施小成, 王元惠. 船舶动力定位海洋环境的建模与仿真[J]. 计算机仿真, 2006, 23(1): 237-239. [3] PARXIS动力定位能力报告 [4] CARBONO AJJ, MENEZESIFM, FEERNL, et al.Mooring pattern optimization using genetic algorithms[C]// 6th World Con-gresses of Structural and Multidisciplinary Optimization, May 30-June 3, 2005, Rio de Janeiro, Brazil. 2005: 1-9 [5] SHAfiEEFAR M, REZVANIA. Mooring optimization of floating platforms using a genetic algorithm[J]. Ocean Engineering, 2007, 34: 1413-1421. DOI:10.1016/j.oceaneng.2006.10.005 [6] 殷俊俊, 潘方豪, 等. 某型海底动力电缆敷设船锚泊系统设计[J]. 船舶, 2018(6): 138-145. [7] 王宗义, 等. 船舶动力定位的数学模型和滤波方法[J]. 哈尔滨工程大学学报, 2002, 23(4): 24-28. DOI:10.3969/j.issn.1006-7043.2002.04.006 [8] SORENSEN A, SAGATUNA S, FOSSEN T. Design of a dynamic positioning system using model-based control[J]. Control Engineering Practice, 1996, 4(3): 359-368. DOI:10.1016/0967-0661(96)00013-5 [9] FOSSEN T I, PEREZ, T. Kalman filtering for positioning and heading control of ships and offshore rigs[J]. IEEE Control Systems Magazine, 2009, 29(6): 32-46. DOI:10.1109/MCS.2009.934408 [10] 朱海洋. 船舶动力定位能力分析系统研究[D]. 镇江: 江苏科技大学, 2017年 [11] 孙俊, 张裕芳, 易宏, 等. 2000t海缆作业船推进系统论证研究[J]. 船舶工程, 2009(6): 24-27. DOI:10.3969/j.issn.1000-6982.2009.06.007 [12] SØRENSEN A J. A survey of dynamic positioning control systems[J]. Annual Reviews in Control, 2011, 35: 123-136. DOI:10.1016/j.arcontrol.2011.03.008