﻿ 船舶机舱主齿轮机组的油气释放特性研究
 舰船科学技术  2020, Vol. 42 Issue (2): 137-139 PDF

1. 武汉第二船舶设计研究所，湖北 武汉 430205;
2. 北京航空航天大学，北京 100083

Research on hydrocarbon release characteristics of main gear units in ship engine room
ZHANG Ye-chuan1, LENG Wen-jun1, YU Tao1,2, ZHAO Jun-tao1, SHI Hong-qi1, SU Hong-tao1
2. Beihang University, Beijing 100083, China
Abstract: According to the oil and gas release characteristics and environmental characteristics of the ship's engine room, this paper proposes the calculation method of the oil release rate of the main gear unit by using the climatic parameter model of the cabin environment. Combined with the measured data of a certain type of ship, the output speed of different main gear units is calculated. The oil and gas release rate is compared with the lumped parameter model to predict the engine oil and gas concentration under continuous variable conditions. At the same time, the correlation between the oil release rate and the output speed of the main gear unit is preliminarily studied. Pollution control has certain reference significance.
Key words: ship     main gear     oil and gas     release
0 引　言

1 研究方法 1.1 测量原理

 图 1 船舶机舱油气控制简化模型 Fig. 1 Simplified model of oil and gas control in ship engine room

 图 2 船舶主机舱油气实测浓度分布 Fig. 2 Oil and gas measured concentration distribution in the main engine compartment of the ship

 $\frac{{{\rm d}C(t)}}{{{\rm d}t}} = - \frac{{Q + CADR}}{V}C(t) + \frac{{{C_0}Q}}{V} + M {\text{，}}$ (1)

 $\begin{split} & {C_{\left( t \right)}} = \\ & \frac{{MV}}{{Q + CADR}} + \left( {{C_{\left( 0 \right)}} - \frac{{MV}}{{Q + CADR}}} \right){\rm{exp}}\left( { - \frac{{Q + CADR}}{V}t} \right) {\text{。}} \end{split}$ (2)

 $C = \frac{{MV}}{{Q + CADR}} {\text{，}}$ (3)
 $M = \frac{{C(Q + CADR)}}{V} {\text{。}}$ (4)

1.2 测量方法

 图 3 TSI8533型气溶胶监测仪 Fig. 3 TSI8533 aerosol monitor
2 结果及分析 2.1 机舱油气释放速率

 图 4 油气释放速率曲线图 Fig. 4 Oil and gas release rate curve
2.2 机舱油气释放速率的影响因素

 图 5 转速与油气释放速率的关系 Fig. 5 Relationship between rotational speed and oil and gas release rate
3 结　语

 [1] 柯文棋. 现代舰船卫生学[M]. 北京: 人民军医出版社, 2005. [2] 中国人民解放军海军. 水面舰艇舱室空气组分容许浓度: GJB7497-2012[S]. 北京: 总装备部军标发行部, 2012. [3] 中国人民解放军海军. 核潜艇舱室空气组分容许浓度: GJB11B-2012[S]. 北京: 总装备部军标发行部, 2012. [4] 潘沪湘, 陈茜, 袁海霞, 等. 某两类全封闭水面舰艇舱室空气质量调查与评价[J]. 海军医学杂志, 2013, 34(2): 88-91. DOI:10.3969/j.issn.1009-0754.2013.02.007 [5] 鲍海阁, 肖存杰, 潘沪湘, 等. 某型舰艇航行期间舱室空气组分分析[J]. 海军医学杂志, 2008, 29(4): 301-304. DOI:10.3969/j.issn.1009-0754.2008.04.005 [6] 余涛. 蒸汽动力船舶汽轮机油散发挥发性有机物的组成特征[J]. 船舶科学技术, 2016, 38(11): 91-94. [7] 余涛, 周爱民, 沈旭东. 多区域网络模型在船舶舱室污染物传播研究中的应用[J]. 船舶科学技术, 2014, 36(8): 137-141. [8] GUNTER KL, SUTHERLAND JW. An experimental investigation into the effect of process conditions on the mass concentration of cutting fluid mist in turning[J]. Journal of Cleaner Production, 1999, 7(5): 341-350. DOI:10.1016/S0959-6526(99)00150-X