﻿ 低速机连杆大端轴瓦安装挤压点分析
 舰船科学技术  2020, Vol. 42 Issue (2): 121-125 PDF

The study of the rod big end shell fitting test of a low speed diesel engine
WANG Kui, LIU Xu, WU Zhao-hui
China Shipbuilding Power Engineering Institute Co., Ltd., Shanghai 200129, China
Abstract: After the sample processing of a new type of low speed engine connecting rod is completed, the dimension of the connecting rod bearing hole at the big end is measured, and then the crush point of the bearing bush is obtained by the experiment. Finite element method was applied to analyze the crush point of the shell, and the simulation results agree with experiments, which has a good validation and supplementary effect on the experiment. Then, the influence of the position of connecting bolts on the crush point of the shell is analyzed by changing the position of connecting bolts at the big end of connecting rod in the simulation model.
Key words: low speed diesel engine     crankpin shell     crush point     FEA
0 引　言

1 连杆大端轴瓦挤压点实验

1.1 内孔变形测量

 图 1 内孔测量示意图 Fig. 1 Schematic diagram of inner hole measurement

 图 3 螺栓泵紧后内孔测量尺寸 Fig. 3 The dimension of inner hole after bolt installation

 图 4 螺栓泵紧后轴瓦内孔测量尺寸 Fig. 4 The dimension of shell inner hole before bolt installation

 图 6 实验数据处理 Fig. 6 Experimental data processing
1.2 挤压点测量

 图 5 轴瓦挤压点实验示意图 Fig. 5 Schematic diagram of bearing shell crush point experiment

 图 7 有限元模型 Fig. 7 FE model

 $\Delta l = \Delta {X_1} + \Delta {X_2}{\text{。}}$ (1)

2 有限元分析

 图 8 整体变形云图 Fig. 8 Overall deformation cloud chart

 图 9 连杆端盖与连杆体接触间隙 Fig. 9 Contact clearance between end connecting rod cap and body

 图 12 螺栓泵压60 MPa时各方案压缩量 Fig. 12 The compression amount of each scheme when the bolt pump pressure is 60 MPa

 图 10 有限元计算结果与实验结果对比 Fig. 10 The comparison of finite element calculation results with the experiment

63 MPa/150 MPa=42%。

3 连接螺栓位置对挤压点的影响计算

 图 11 不同螺栓布置方案接触面压缩量数据 Fig. 11 Contact surface compression data of different bolt layout schemes

4 结　语

1）通过对轴承孔内径尺寸测量分析，为轴瓦挤压点实验提供了尺寸保证。

2）通过综合实验和仿真计算结果，可以确定该连杆大端轴瓦的挤压点约为42%，满足设计要求。

3）在一定范围内改变连杆大端连接螺栓位置对轴瓦挤压点的影响有限。

 [1] 石拥军. 某轮主机连杆大端轴承损坏原因分析[J]. 航海, 2017(2): 52-54. SHI Yongjun. Analysis of damage reason of connecting rod big end bearing of some engine[J]. Navigation, 2017(2): 52-54. DOI:10.3969/j.issn.1005-9660.2017.02.020 [2] 贾德文, 申立中, 毕玉华, 等. 柴油机连杆大头轴承润滑特性影响因素的研究[J]. 汽车工程, 2012, 34(11): 981-983+994. JIA De-wen, SHEN Li-zhong, BI Yu-hua, et al. A study on the factors affecting the lubrication characteristics of connecting rod big end bearing in diesel engine[J]. Automotive Engineering, 2012, 34(11): 981-983+994. DOI:10.3969/j.issn.1000-680X.2012.11.004 [3] 张金良, 王永州, 王宗涛. 某船辅机连杆大端轴承内孔变形的修复[J]. 船海工程, 2012, 41(4): 121-122. ZHANG Jin-liang, WANG Yong-zhou, WANG Zong-tao. Repairing of the Deformation in Connecting Rod Bearing Bore[J]. Ship & Ocean Engineering, 2012, 41(4): 121-122. DOI:10.3963/j.issn.1671-7953.2012.04.033 [4] 王磊, 廖日东. 安装状态下柴油机主轴承孔及主轴瓦变形计算研究[J]. 内燃机工程, 2013, 34(6): 70-75. WANG Lei, LIAO Ridong. Computational study of main bearing bore and bush deformation in assembly state[J]. Chinese Internal combustion engine engineering, 2013, 34(6): 70-75. [5] 王奎, 张琼宇, 吴安民, 等. 某船用低速柴油机主轴承盖预紧试验研究[J]. 舰船科学技术, 2017, 39(9): 96-100. WANG Kui, ZHANG Qiong-yu, WU An-min, et al. Experimental research on a marine low speed diesel engine of main bearing cap tension[J]. Ship Science and Technology, 2017, 39(9): 96-100. [6] 王奎, 刘旭, 吴朝晖, 等. 某低速柴油机主轴承轴瓦安装挤压点分析[J]. 船海工程, 2017, 46(6): 81-85. WANG Kui, LIU Xu, WU Zhao-hui, TU dan-hong. Study on the Fitting Test of Main Bearing Shell of a Low Speed Diesel Engine[J]. Ship & Ocean Engineering, 2017, 46(6): 81-85. DOI:10.3963/j.issn.1671-7953.2017.06.018