﻿ 基于柴-柴联合推进系统的动态特性仿真
 舰船科学技术  2020, Vol. 42 Issue (2): 115-120 PDF

Simulation research on dynamic state characteristics of CODAD propulsion system
LIU Qi, LIU Yun-sheng, CHEN Xin-zhuan, WANG Meng, WU Yue
No. 92942 Unit of PLA, Beijing 100161, China
Abstract: In order to clarify the effect of parameter matching between the ship, the diesel engine and the propeller on the dynamic characteristics of ship propulsion system and provide a theoretical basis for the overall optimization and improvement in the later stage, the mathematical models of the subsystems such as diesel engine, gear box, shaft system and pitch propeller were established. The network hierarchy of propulsion system was built by using Simulink core components and the simulation calculation was carried out. The dynamic acceleration and deceleration characteristics of the propulsion system under the cold and heat engine conditions were analyzed and the simulation optimization were carried out. The results show that the speed of ship changes smoothly under the condition of heat engine deceleration, cold engine acceleration and cold engine deceleration, and the diesel engine is in ideal running condition. Under the accelerated condition of heat engine, the speed oscillation adjustment exists when the acceleration reaches the maximum, which easily leads to overload phenomenon of the diesel engine. This problem can be avoided by reasonably matching the adjustment time of the acceleration process, and the dynamic characteristics of propulsion system can be optimized.
Key words: CODAD     propulsion system     dynamic characteristics     ship speed
0 引　言

1 推进系统数学模型 1.1 柴油机

 $\frac{{{\text{π}} {I_e}}}{{30}}\frac{{{\rm d}{N_d}}}{{dt}} = {M_i} - {M_B} - {M_f} {\text{。}}$ (1)

 ${M_i} = {{{H_u}{g_c}{\eta _i}} / {\tau{\text{π}} }} {\text{，}}$ (2)
 ${M_e} = {M_i} \cdot {\eta _m} {\text{。}}$ (3)

 ${\eta _i} = ({C_1} + {C_2}{N_d} - {C_3}N_d^3)(1 - {C_4}{\alpha ^{ - {C_5}}}) {\text{，}}$ (4)

 ${\eta _m} = \frac{{{p_e}}}{{{p_i}}} = \frac{{{p_e}}}{{{p_e} + {p_m}}} {\text{。}}$ (5)

1.2 齿轮箱

 ${N_d} = {N_p} \cdot i {\text{，}}$ (6)
 ${Q_d} = {Q_p} \cdot i {\text{，}}$ (7)
 ${I_d} = {I_p} \cdot i {\text{。}}$ (8)

1.3 轴系

 ${M_e} \cdot i \cdot T \cdot {\eta _{gb}} - {M_{f2}} - {M_p} = {I_s} \cdot \frac{{\text{π}} }{{30}} \cdot \frac{{{\text{d}}{N_p}}}{{{\text{d}}t}} {\text{。}}$ (9)

 ${M_{f2}} = \left( {\frac{1}{3} + \frac{2}{3} \cdot \frac{{{N_p}}}{{{N_{d0}}}} \cdot i} \right){M_{fd0}} {\text{。}}$ (10)

 ${I_s} = {I_1} \cdot {i^2} \cdot {\eta _{gb}} + {I_2} + {I_3} {\text{。}}$ (11)

1.4 调距桨

 ${T_p} = {K_T}\rho N_p^2{D^4} {\text{，}}$ (12)
 ${M_p} = {K_Q}\rho N_p^2{D^5} {\text{。}}$ (13)

 ${T_e} = {T_p}\left( {1 - {t_p}t} \right) {\text{，}}$ (14)
 ${V_p} = {V_s}\left( {1 - w} \right) {\text{。}}$ (15)

 ${t_p} = \left\{ {\begin{array}{*{20}{c}} 3 {\text{，}}&{P/D \leqslant {\rm{ - 1}}} {\text{，}} \\ { - 3P/D} {\text{，}}&{{\rm{ - 1 < }}P/D{\rm{ < 0}}} {\text{，}} \\ {{\rm{ }}P/D} {\text{，}}&{{\rm{0}} \leqslant {\rm{ }}P/D{\rm{ < 1}}} {\text{，}}\\ 1 {\text{，}}&{P/D \geqslant {\rm{1}}} {\text{。}} \end{array}} \right.$ (16)
2 仿真模型及参数设置

 图 1 推进系统仿真模型 Fig. 1 Propulsion system simulation model
3 结果分析 3.1 加速工况

 图 2 冷机正常加速过程主机功率变化规律 Fig. 2 Power variation of main engine during normal acceleration of cooling engine

 图 9 热机应急加速过程航速变化规律 Fig. 9 Ship speed variation during emergency acceleration of heat engine

 图 3 冷机正常加速过程航速变化规律 Fig. 3 Ship speed variation during normal acceleration of cooling engine

 图 4 冷机应急加速过程主机功率变化规律 Fig. 4 Power variation of main engine during emergency acceleration of cooling engine

 图 5 冷机应急加速过程航速变化规律 Fig. 5 Ship speed variation during emergency acceleration of cooling engine

 图 6 热机正常加速过程主机功率变化规律 Fig. 6 Power variation of main engine during normal acceleration of heat engine

 图 7 热机正常加速过程航速变化规律 Fig. 7 Ship speed variation during normal acceleration of heat engine

 图 8 热机应急加速过程主机功率变化规律 Fig. 8 Power variation of main engine during emergency acceleration of heat engine
3.2 减速工况

 图 10 冷机正常减速过程主机功率变化规律 Fig. 10 Power variation of main engine during normal deceleration of cooling engine

 图 11 冷机正常减速过程航速变化规律 Fig. 11 Ship speed variation during normal deceleration of cooling engine

 图 12 冷机应急减速过程主机功率变化规律 Fig. 12 Power variation of main engine during emergency deceleration of cooling engine

 图 13 冷机应急减速过程航速变化规律 Fig. 13 Ship speed variation during emergency deceleration of cooling engine

 图 14 热机正常减速过程主机功率变化规律 Fig. 14 Power variation of main engine during normal deceleration of heat engine

 图 15 热机正常减速过程航速变化规律 Fig. 15 Ship speed variation during normal deceleration of heat engine

 图 16 热机应急减速过程主机功率变化规律 Fig. 16 Power variation of main engine during emergency deceleration of heat engine

 图 17 热机应急减速过程航速变化规律 Fig. 17 Ship speed variation during emergency deceleration of heat engine

 图 18 热机应急加速过程优化后主机功率变化规律 Fig. 18 Power variation of main engine after optimization of heat engine emergency acceleration
3.3 热机应急加速工况优化

 图 19 热机应急加速过程优化后航速变化规律 Fig. 19 Ship speed variation after optimization of heat engine emergency acceleration
4 结　语

2）依据理论设计的动态控制参数对推进系统冷热机的加、减速以及由全正车到全倒车等动态过程进行了仿真研究，得到了主机功率变化规律和全船航速变化规律，分析了各个工况下推进系统的动态加、减速特性，并对超负荷情况较严重的热机应急加速工况进行了仿真优化。

3）推进系统在热机减速、冷机加速、冷机减速工况下航速变化平稳，主机运行状况理想，船舶航行性能较好。在热机加速工况下由于在加速度达到最大时存在转速振荡调整过程，易导致主机出现超负荷现象。通过合理地匹配加速过程调节时间可以避免超负荷问题，优化推进系统的动态性能。

 [1] 陈虞涛, 曾凡明, 陈国钧, 等. 船舶并车推进装置负荷均衡控制策略研究[J]. 舰船科学技术, 2008, 30(5): 24-28. CHEN Yu-tao, ZENG Fan-ming, CHEN Guo-jun, et al. Study on power control strategy of marine CODAD propulsion plant[J]. Ship Science and Technology, 2008, 30(5): 24-28. DOI:10.3404/j.issn.1672-7649.2008.05.003 [2] 敖晨阳, 陈华清, 曾凡明, 等. 舰船全柴并车后传动装置定量分析研究[J]. 舰船科学技术, 2002, 24(6): 26-29. AO Chen-yang, CHEN Hua-qing, ZENG Fan-ming, et al. The Study of quantitative analysis for all diesel parallel running transmissions[J]. Ship Science and technology, 2002, 24(6): 26-29. [3] 宋恩哲, 李晓通, 陆平, 等. 柴柴联合动力装置工况切换及控制策略研究[J]. 哈尔滨工程大学学报, 2003, 24(5): 518-521. SONG En-zhe, LI Xiao-tong, LU Ping, et al. Operating mode’s switch and control strategy of CODAD system[J]. Journal of Harbin Engineering University, 2003, 24(5): 518-521. DOI:10.3969/j.issn.1006-7043.2003.05.011 [4] EMIN Korkut, MEHMET Atlar. An Experimental investigation of the effect of foul release coating application on performance, noise and cavitation characteristics of marine propellers[J]. Ocean Engineering, 2012(41): 1-12. [5] 景民, 陆金铭. Matlab/Simulink仿真技术在舰船推进装置中的应用[J]. 船海工程, 2007, 36(4): 125-127. JING Min, LU Jing-min. Application of Matlab/Simulink in design of the propulsion device of warship[J]. Ship&Ocean engineering, 2007, 36(4): 125-127. DOI:10.3963/j.issn.1671-7953.2007.04.040 [6] 胡明华, 马来好, 杨杰, 等. 基于AMEsim-Simulink的船舶液压推进系统仿真研究[J]. 船舶工程, 2015, 37(12): 28-30. HU Ming-hua, MA Lai-hao, YANG Jie, et al. Simulation of marine hydraulic propulsion system based on AMESIM-SIMULINK co-simulation[J]. Ship Engineering, 2015, 37(12): 28-30. [7] 严新平, 李志雄, 刘正林, 等. 大型船舶推进系统与船体耦合动力学研究综述[J]. 船舶力学, 2013, 17(4): 439-449. YAN Xin-ping, LI Zhi-xiong, LIU Zheng-lin, et al. Study on coupling dynamical theory for interaction of propulsion system and hull of large ships: a review[J]. Journal of Ship Mechanics, 2013, 17(4): 439-449. [8] 孔庆福, 吴家明, 曾凡明. 船舶喷水推进系统数学建模及仿真研究[J]. 船舶工程, 2006, 28(2): 12-16. KONG Qing-fu, WU Jia-ming, ZENG Fan-ming. Mathematical modeling and simulation of marine water-jet propulsion system[J]. Ship Engineering, 2006, 28(2): 12-16. DOI:10.3969/j.issn.1000-6982.2006.02.007 [9] 王海刚. 高速船可调桨推进系统建模及仿真研究[D]. 武汉: 武汉理工大学, 2008.