﻿ 基于多学科设计优化的UUV总体组合优化方法
 舰船科学技术  2020, Vol. 42 Issue (2): 77-81 PDF

Research on UUV overall combination optimization method based on multidisciplinary design optimization
YAN Zhe-ping, WANG Tian-hao, XU Xiu-jun, HOU Shu-ping
College of Automation, Harbin Engineering University, Harbin 150001, China
Abstract: UUV is a multi-disciplinary complex coupling system. MDO method can greatly shorten the UUV development cycle and improve the overall performance of UUV. For the overall design of UUV, modularization division was carried out, and analysis models of various disciplines are established. Since the UUV overall system belongs to multivariate high-dimensional space, a single optimization method cannot obtain the global solution optimal solution, and the sequential quadratic programming method was combined with adaptive simulated annealing method and multi-island genetic algorithm, based on collaborative optimization strategy, multi-disciplinary design optimization on UUV total weight optimization target was carried out; and UUV structural strength and stability were verified using simulation analysis. It can be seen from the results of the optimized design that the UUV total weight reduced effectively under the premise that the UUV meets the constraints of each subsystem.
Key words: unmanned underwater vehicle     multidisciplinary design optimization     subject analysis     combinatorial optimization
0 引　言

1 UUV分学科设计 1.1 阻力学科

UUV壳体分为首部、中段和尾部3个部分，其中首部和尾部分别通过进流段和去流段各自连接一部分平行中体组成，中段部分的壳体为标准圆柱形回转体，进流段和去流段均由国际通用的Myring曲线回转生成，如图1所示。

 图 1 无人水下航行器侧视图 Fig. 1 Side view of UUV

UUV首、尾段线型公式如下：

 ${{r}}\left( {{x}} \right) = \frac{1}{2}{{d}}{\left[ {1 - {{\left( {\frac{{{{x}} - {{a}}}}{{{a}}}} \right)}^2}} \right]^{\frac{1}{2}}} {\text{，}}$ (1)
 $\begin{split} {r} \left( x \right) =\,& \frac{1}{2}d - \left( {\frac{{3d}}{{2{c^2}}} - \frac{{\tan q}}{c}} \right){\left( {x - a - b} \right)^2} + \\ &\left( {\frac{d}{{{c^3}}} - \frac{{\tan q}}{c}} \right){\left( {x - a - b} \right)^3} {\text{。}} \end{split}$ (2)

UUV作业过程中如果下潜深度超过了自身长度，就能够忽略兴波阻力的影响，那么巡航速度下总阻力为：

 $\begin{split} & {R} = {R_f} + {R_{PV}} + {R_{AP}}{\text{，}} \\ & {R} = \frac{1}{2}rV_{el}^2S\left( {{C_f} + V{C_f} + {C_{PV}} + {C_{AP}}} \right) {\text{。}} \end{split}$ (3)

1.2 结构学科

1）确定计算压力

 ${{P} _j} = 1.5 \times rgh = 1.5{\rm MPa}$ (4)

2）公式里的代表符号与辅助函数

 ${u} = \frac{{\sqrt[4]{{3\left( {1 - {m^2}} \right)}}}}{2}\frac{l}{{\sqrt {Rt} }};{y} = \frac{{\sqrt {3\left( {1 - {m^2}} \right)} }}{2}\frac{{{P_j}{R^2}}}{{E{t^2}}}{\text{，}}$ (5)
 $\beta = \frac{{lt}}{F};{{u} _1} = u\sqrt {1 - y};{{u} _2} = u\sqrt {1 + y}{\text{，}}$ (6)
 ${{\mathop{ F}\nolimits} _1}\left( {{u_1},{u_2}} \right) = \frac{{\sqrt {1 - {y^2}} \left( {ch2{u_1} - \cos 2{u_2}} \right)}}{{{F_5}\left( {{u_1},{u_2}} \right)}} {\text{，}}$ (7)
 ${{\mathop{ F}\nolimits} _2}\left( {{u_1},{u_2}} \right) = \frac{{3\left( {1 - 0.5m} \right)\left( {{u_2}sh2{u_1} - {u_1}\sin2{u_2}} \right)}}{{\sqrt {3\left( {1 - {m^2}} \right)} {F_5}\left( {{u_1},{u_2}} \right)}}{\text{，}}$ (8)
 $\begin{split} &{{\mathop{ F}\nolimits} _3}\left( {{u_1},{u_2}} \right) =\\ &\frac{{6\left( {1 - 0.5m} \right)\left( {{u_1}ch{u_1}\sin {u_2} - {u_2}sh{u_1}\cos {u_2}} \right)}}{{\sqrt {3\left( {1 - {m^2}} \right)} {F_5}\left( {{u_1},{u_2}} \right)}}{\text{，}} \end{split}$ (9)
 $\begin{split} & {{\mathop{ F}\nolimits} _4}\left( {{u_1},{u_2}} \right) =\\ & \frac{{2\left( {1 - 0.5m} \right)\left( {{u_1}ch{u_1}\sin {u_2} + {u_2}sh{u_1}\cos {u_2}} \right)}}{{{F_5}\left( {{u_1},{u_2}} \right)}}{\text{，}} \end{split}$ (10)
 ${{\mathop{ F}\nolimits} _5}\left( {{u_1},{u_2}} \right) = {u_2}sh2{u_1} + {u_1}\sin 2{u_2} {\text{。}}$ (11)

3）应力计算与校验

1）工字梁中点处的水平均应力

 $\sigma _2^0 = - K_2^0\frac{{{P_j}R}}{t}{\text{。}}$ (12)

2）肋板处结构的纵向相当应力

 ${\left( {{\sigma _l}} \right)_{x = \frac{1}{2}}} = - \left( {0.91{K_1} - 0.3{K_r}} \right)\frac{{{P_j}R}}{t} {\text{。}}$ (13)

3）肋板上的应力

 ${\sigma _r} = - {K_r}\frac{{{P_j}R}}{t} {\text{。}}$ (14)
1.3 能源学科

UUV的能源系统氛围控制用电和动力用电两类，根据搭载试验设备的要求，选用500 AH/300 V的电池。装载电池组模块的电池箱尺寸为840 mm×1 180 mm×720 mm，电池组模块的重量约为820 kg。UUV最高设计航速15 kn，以最高航速航行的最远航程需花费10 h。螺旋桨的有效功率为：

 ${{P} _E} = {V_{\rm Max}}{R_{\rm Max}} {\text{。}}$ (15)

 ${{P} _S} = \frac{{{P_E}}}{{{\eta _1}{\eta _2}}} {\text{。}}$ (16)

 ${W} = {P_{\max}}h/90\% {\text{，}}$ (17)

 ${M} = r\left( {{V_d} + {V_c}} \right) {\text{。}}$ (18)
1.4 推进学科

1）螺旋桨的推力大于航行器的最大阻力

 ${Cons} = \rho {K_t}{M^2}D_p^4 - {R_{\max}} > 0 {\text{。}}$ (19)

2）螺旋桨的功率小于主机功率

 ${ConsP} = {P_s} - 2{\text{π}} {M} Q > 0 {\text{。}}$ (20)

3）螺旋桨的直径超过航行器直径的0.8倍

 ${ConsD} = 0.8d - {D_p} > 0 {\text{。}}$ (21)
2 UUV多学科优化策略

 图 2 协同优化方法示意图 Fig. 2 Diagram of CO

 图 3 NLPQL+MIGA算法目标函数迭代历程（0～1 000步） Fig. 3 Iteration of NLPQL combined with MIGA

 图 4 NLPQL+ASA算法目标函数迭代历程（8 000～10 000步） Fig. 4 Iteration of NLPQL combined with ASA

3 结果分析与仿真校验 3.1 结果分析

3.2 仿真校验 3.2.1 静力学仿真验证

 图 5 UUV静力学分析云图 Fig. 5 UUV static analysis cloud image

3.2.2 稳定性分析

 图 6 UUV的1～6阶模态 Fig. 6 UUV 1～6 modes

UUV在水下进行运动时螺旋桨持续进行工作，螺旋桨的动力来自于舵机，最高转速是700 r/min，此转速下频率是11.67 Hz，与6阶的共振频率相差巨大，因此主推达到设计要求。

UUV在水下进行运动时的方向改变和方向维持，通过转向舵完成，转向舵机转速是1 000 r/min，此转速下频率是16.67 Hz，由于并未达到UUV的共振频率，转向舵机符合要求。UUV在水中进行运动时下潜、上浮和维持指定深度运动通过航行器的俯仰舵机来进行，俯仰舵机转速是2 400 r/min，此转速下频率是40 Hz，同样并未达到UUC的共振频率，所以俯仰舵机符合要求。

4 结　语

 [1] MAHMOUDZADEH S, POWERS D M W, ATYABI A. UUV's Hierarchical DE-Based Motion Planning in a Semi Dynamic Underwater Wireless Sensor Network[J]. IEEE Transactions on Cybernetics, 2018, 99: 1-14. [2] 潘光, 宋保维, 黄桥高, 等. 水下无人系统发展现状及其关键技术[J]. 水下无人系统学报, 2017, 25(2): 44-51. [3] 齐翔, 唐晓, 齐欢. 基于改进Jackson船型的潜艇外形多学科设计优化[J]. 舰船科学技术, 2018, 40(21): 35-38. [4] ZHANG D, SONG B, WANG P, CHEN X. Multidisciplinary optimization design of a new underwater vehicle with highly efficient gradient calculation[J]. Structural & Multidisciplinary Optimization, 2017, 55(4): 1483-1502. [5] 张礼华, 刘芳华, 楼飞, 等. 单体式无人航行器的设计、实验及优化[J]. 中国造船, 2016, 57(4): 131-138. DOI:10.3969/j.issn.1000-4882.2016.04.015