﻿ 码头内大型船舶双船系泊方案研究
 舰船科学技术  2020, Vol. 42 Issue (2): 55-59 PDF

Double ship mooring of large ship in dock
KONG Ling-hai, SUN Yin-bo, QU Zhao-yu, ZHANG Xin
School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract: In order to ensure the safety of mooring of quay terminals under typhoon and other severe sea conditions, especially the mooring safety of ships in the middle position, it is necessary to study the typhoon mooring scheme against typhoon quay to ensure that the quays are moored side by side in typhoon. It is safe and stable under adverse sea conditions. The conventional single ship moored at this stage has been more mature research, mainly rely on numerical simulation and model test, can get a complete set of mooring scheme. Mooring relative problems in the current study are given two ships moored on there is a big difference between single ship moored in the mooring form, the dynamic characteristics of water etc. The particularity of berthing in parallel with two ships at wharf needs to be studied emphatically, and the possible problems in the design scheme are analyzed, which will provide valuable research for the future berthing in parallel with multiple ships at wharf.
Key words: large vessel     double ship mooring     typhoon scheme
0 引　言

1 系泊动态分析理论

 ${R^I}(r,\ddot r,t) + {R^D}(r,\dot r,t) + {R^S}(r,t) = {R^E}(r,\dot r,t){\text{。}}$

 ${{ R}^I}(r,\ddot r,t) = { M}(r)\ddot r = [{{ M}^S} + {{ M}^F} + {{ M}^H}(r)]\ddot r{\text{，}}$

 ${{ R}^D}(r,\dot r,t) = { C}(r)\dot r = [{{ C}^S}(r) + {{ C}^H}(r) + {{ C}^D}]\dot r{\text{。}}$

2 码头情况及水文气象条件

 图 1 码头示意图 Fig. 1 Dock schematic

3 系泊方案的设计

3.1 船舶系泊绳数目计算

3.2 工况及环境参数

3.3 码头并排系泊布置设计

 图 2 码头双船系泊方案 Fig. 2 Wharf double ship mooring program
3.4 并排系泊布置设计结果分析

 图 3 两船缆绳受力对比 Fig. 3 Two ships cable force contrast

 图 4 两船护舷受力对比 Fig. 4 Two ship fenders force comparison

 图 5 内船运动随风向变化 Fig. 5 The movement of the vessel varies with the direction of the wind

 图 6 外船运动随风向变化 Fig. 6 The movement of the outer vessel varies with the direction of the wind

3.5 预抛锚系泊布置方案

 图 7 码头双船预抛锚布置方案 Fig. 7 Double ship pre-broken anchor layout plan
3.6 预抛锚系泊布置方案结果分析

 图 8 两船缆绳受力对比 Fig. 8 Two ships cable force contrast

 图 9 两船护舷受力对比 Fig. 9 Two ship fenders force comparison

 图 10 内船运动随风向变化 Fig. 10 The movement of the vessel varies with the direction of the wind

 图 11 外船运动随风向变化 Fig. 11 The movement of the outer vessel varies with the direction of the wind

4 结　语

1）码头系泊时，船舶的纵向、横向受风面积都非常大，要尽可能增加倒缆数量，同时缆绳布置要尽可能对称分布，外船的运动幅度较内船略大。

2）在强台风情况下，系泊船舶采取抛锚方式能有效提高系泊安全性，同时应对部分缆绳采用双股缆绳的布置方式以增加缆绳承受力。

3）两船的缆绳受力在60°～90°风浪方向时受力较大，护舷在–90°风浪方向与90°风浪方向时整体受力均较大，在离岸风向时，下层护舷受力较大，在靠岸风向时，船尾处护舷受力较大。

4）在纵荡方向上，两船均从0°风浪方向时开始增大，在90°风浪方向时取得最大值，与缆绳受力趋势一致。在横荡方向上，两船运动趋势大体一致。在艏摇方向上，内船在30°风浪方向时运动幅度最大，外船在–30°风浪方向时运动幅度最大。

 [1] 陈昌源. 基于OPTIMOOR软件的船行波对系泊船安全影响研究[D]. 大连: 大连海事大学, 2017. [2] 林海滨. 多浮筒系泊系统动力分析及软件开发[D]. 青岛: 中国海洋大学, 2015. [3] 连建鲁. 自升式海洋平台抗台风码头系泊方案研究[D]. 镇江: 江苏科技大学, 2015. [4] 袁培银. 新型系泊系统的设计方法及其水动力性能分析[D]. 镇江: 江苏科技大学, 2014. [5] 刘晓健. FPSO单点系泊系统运动响应分析[D]. 镇江: 江苏科技大学, 2013. [6] 王会丽. 单点系泊下船舶动力定位控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2013. [7] IMOTO SHIMPEI, NISHIMATA KEISUKE, MIKAMI SATOSHI. Improvement Method of sheet pile type mooring wharf and temporary support frame body used for the same[P]. JP2012172313, 2012-09-10. [8] 李永超. 台风状态下码头系泊安全问题研究[D]. 上海: 上海交通大学, 2011.