﻿ 压气机叶片造型对强度性能的影响
 舰船科学技术  2019, Vol. 41 Issue (10): 148-152 PDF

1. 海军工程大学 舰船动力工程军队重点实验室，湖北 武汉 430033;
2. 海军工程大学 动力工程学院，湖北 武汉 430033

Research on the influence of blade shape on the strength performance of a compressor
CHEN Yang1,2, GUO Cheng-hao1,2
1. Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, China;
2. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: In this paper, based on understanding and summarizing the current status of strength design and optimization of compressor airfoil structure, the finite element method is used to calculate the static strength of the blade for a given blade shape. Based on the calculation of the static strength, the modality of the blade is analyzed. The results obtained have theoretical and practical value for the optimal design of compressed air blade strength.
Key words: compressor     blade     shape     strength properties
0 引　言

1 压气机叶片有限元计算 1.1 叶片强度分析有限元方程

 $\left[ {{M}} \right]\left\{ {{\ddot u}} \right\} + \left[ {{C}} \right]\left\{ {{\dot u}} \right\} + \left[ {{K}} \right]\left\{ {{u}} \right\} = \left\{ {{{F}}\left( t \right)} \right\}{\text{。}}$ (1)

 $\left[ {{M}} \right]\left\{ {{\ddot u}} \right\}\left[ {{K}} \right]\left\{ {{u}} \right\} = \left\{ 0 \right\}\text{，}$ (2)

 $\left\{ u \right\} = \left\{ {{\phi _i}} \right\}\sin \left( {{w_i}t} \right){\text{，}}$ (3)

 $\left( {\left[ {{K}} \right] - {w_i}^2\left[ {{M}} \right]} \right)\left\{ {{\phi _i}} \right\} = \left\{ 0 \right\}{\text{。}}$ (4)

 $\left| {\left[ {{K}} \right] - {w_i}^2\left[ {{M}} \right]} \right| = 0{\text{。}}$ (5)

 ${f_i} = \frac{{{w_i}}}{{2{\text{π}} }}{\text{。}}$ (6)
1.2 压气机叶片有限元建模

 图 1 压气机叶片有限元模型 Fig. 1 Finite element model of compressor blade

2 静强度性能分析 2.1 叶片厚度对静强度性能的影响

 图 2 不同厚度叶片变形图 Fig. 2 Blade deformation with different thickness

 图 4 不同厚度叶片应力图 Fig. 4 Blade stress with different thickness

 图 3 不同厚度叶片应变图 Fig. 3 Blade strain with different thickness

 图 5 叶片最大变形值与厚度关系 Fig. 5 Relation between blade maximum deformation value and thickness

 图 7 叶片最大应力值与厚度关系 Fig. 7 Relation between blade maximum stress value and thickness

 图 6 叶片最大应变值与厚度关系 Fig. 6 Relation between blade maximum strain value and thickness

2.2 叶片高度对静强度性能的影响

 图 8 不同高度叶片变形图 Fig. 8 Blade deformation with different heights

 图 10 不同高度叶片应力图 Fig. 10 Blade stess with different heights

 图 9 不同高度叶片应变图 Fig. 9 Blade strain with different heights

 图 11 叶片最大变形值与叶高关系 Fig. 11 Relation between blade maximum deformation value and height

 图 13 叶片最大应力值与叶高关系 Fig. 13 Relation between blade maximum stress value and blade height

 图 12 叶片最大应变值与叶高关系 Fig. 12 Relation between blade maximum strain value and blade height

3 动强度性能分析 3.1 叶片厚度对固有频率的影响

3.2 叶片高度对固有频率的影响

4 结　语

1）对叶片进行静强度计算，分析叶片只在离心力载荷作用下的变形和应力分布规律。结果显示，厚度越大的叶片受到的应力越小，其变形也越小；叶高越大的叶片，其发生的变形及受到的应力越大。最大变形量一般出现在叶尖部位，叶根的变形量很小，叶身的应力值普遍较低，由叶尖向叶根逐渐增大。

2）对不同厚度的叶片和不同叶高的叶片进行模态分析，从预防低频共振的角度得出一组最优叶片造型方案：叶片厚度为8 mm，叶片高度为200 mm。

 [1] 李其汉, 王延荣. 航空发动机结构强度设计问题[M]. 上海: 上海交通大学出版社, 2014. [2] 曲文浩. 航空发动机压气机叶片的静力学及模态分析[D]. 沈阳: 东北大学, 2012. [3] RALSTON F, SAMI E B, KHALED A, et, al. Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system[J]. Advanced Modeling and Simulation in Engineering and Science, 2016(3): 30-35. [4] JIANFU H, BRYON J W, ROSS A. An investigation of fatigue failure of turbine blades in a gas turbine by mechanical analysis[J]. Engineering Failure Analysis, 2002(9): 201-211. [5] FRAUKE H, RALF K, JOHNANNES R. Strucural modeling and validation of an active twist model rotor blade[J]. CEAS Aeronautical Journal, 2016(7): 43-45.