﻿ 大型气垫船阻力特性仿真与影响因素分析
 舰船科学技术  2019, Vol. 41 Issue (10): 55-58 PDF

1. 中国人民解放军 92728部队，上海 210001;
2. 海军工程大学 动力工程学院，湖北 武汉 430033

The simulation of large hovercraft resistance characteristics and influence factors analysis
ZHAO Yu-nan1, YU You-hong2, HE Xing2
1. No 92728 Unit of PLA, Shanghai 210001, China;
2. College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: According to the air cushion vehicle hull resistance characteristic, and the resistance impacted by hull status, environment and numerous factors during the hovercraft sails is taken into account. The mathematical model and computer stimulation are set based on coupling calculation by using variable step fourth order Runge-Kutta method for different kinds of resistance, Compared to the backstepping data from the experiment ship, the model established can be verified to better reflect the hovercraft resistance characteristic. On this basis, sea state, wind direction air temperature and load impacting on hovercraft resistance are analyzed by stimulation. The results of research show that the influence of sea state ranks the highest, and becomes stronger with the increase of ship’s speed.
Key words: large hovercraft     resistance calculation     numerical simulation
0 引　言

1 阻力系统仿真原理 1.1 大型气垫船阻力系统物理模型

 图 1 阻力系统模型 Fig. 1 Resistance system model

 $\frac{{\rm d }v}{{\rm d }t} = \frac{1}{m}(F - R){\text{。}}$ (1)

 $v = \int {\frac{{F - R}}{m}{\rm d}t}{\text{，}}$ (2)

1.2 仿真算法

2 全垫升气垫船各阻力数学模型

 $R = {R_a} \!+\! {R_m} \!+\! R_w^{} \!+ \!{R_z} \!+ \!{R_{se}}\! + \!{R_{sw}} \!+\! \Delta {R_a} \!+ \!\Delta {R_m} \!+\! \Delta {R_{se}} {\text{，}}$ (3)
 ${R_a} = {C_a} \cdot \frac{{{\rho _a} \cdot {V^2}}}{2} \cdot {S_a}{\text{。}}$ (4)

 ${R_m} = {\rho _a} \cdot {Q_f} \cdot V {\text{，}}$ (5)

 $\mathop R\nolimits_w = \mathop C\nolimits_w \cdot \frac{{\mathop P\nolimits_c^2 \cdot \mathop B\nolimits_c }}{{\mathop {g \cdot \rho }\nolimits_w }} {\text{，}}$ (6)

 ${R_z} = W \cdot \alpha {\text{，}}$ (7)

 ${R_{se}} = {K_1} \cdot {10^{ - 6}} \cdot {\left( {\frac{h}{{{C_l}}}} \right)^{ - 0.34}} \cdot {C_l} \cdot \sqrt {{S_c}} \cdot {q_w} {\text{。}}$ (8)

 ${R_{SW}} = \left[ {2.816\;7 \cdot {{\left( {\frac{{{P_c}}}{{g{L_c}}}} \right)}^{ - 0.259}} - 1} \right] \cdot {R_w}{\text{，}}$ (9)
 $\Delta {R_a} = {C_a} \cdot \frac{{{\rho _a} \cdot {{(V + {V_b})}^2}}}{2}{S_a} - {R_a}{\text{，}}$ (10)

 $\Delta {R_m} = {\rho _a} \cdot {Q_f} \cdot {V_b} {\text{，}}$ (11)
 $\Delta {R_{se}} = {q_w} \cdot {C_l} \cdot \sqrt {{S_c}} \cdot 20 \times 1{0^{ - 5}} \cdot {\left[ {\frac{{2{H_w}}}{{({H_c} + {H_f}) \cdot 1.604}}} \right]^{5 / 3}}{\text{。}}$ (12)

3 仿真计算及结果分析

3.1 阻力仿真结果及分析

 图 2 仿真阻力数据与实艇试验换算数据对比曲线 Fig. 2 Comparison curve between simulated resistance data and converted data of real boat test

1）本文对海况和风速的对应关系只是根据简单的海况风速表进行赋值，和实际情况存在一定出入，并不能很好地反应实际情况；

2）本文所使用的兴波阻力系数曲线由Newman图谱插值得到，且其海水密度、空气密度取值均与实际情况存在误差，故在阻力变化过程中存在偏差；

3）推力值公式是由经验公式得来，计算值与实际情况有差别。

3.2 气垫船阻力影响因素分析

1）海况对气垫船阻力的影响

 图 3 气垫船总阻力随海况变化特性曲线 Fig. 3 Characteristic curve of total resistance of hovercraft changing with sea condition

2）风向对阻力值的影响

 图 4 海况2气垫船总阻力随风向变化特性曲线 Fig. 4 Characteristic curve of total resistance of hovercraft changing with wind direction under sea condition two

 图 5 海况4气垫船总阻力随风向变化特性曲线 Fig. 5 Characteristic curve of total resistance of hovercraft changing with wind direction under sea condition four

3）空气温度、装载对气垫船阻力的影响

 图 6 气垫船总阻力随空气温度变化特性曲线 Fig. 6 Characteristic curve of total resistance of hovercraft changing with air temperature

 图 7 气垫船总阻力随装载变化特性曲线 Fig. 7 Characteristic curve of total resistance of hovercraft changing with loading
4 结　语

1）总体而言，气垫船在低航速下会达到阻力峰值，随着航速的不断增加，跨过峰值后阻力会有一定程度的下降，而后随着航速不断的增加而增大；

2）在其他外部环境不变的情况下，海况越恶劣，阻力值越大，越不利于气垫船航行，且海况变化对阻力值的变化影响明显，航速越高，影响越大。因此，在海况不好的情况下，应控制航速在20～30 kn之间；同理，在海况良好的情况下，可尽快跨过阻力峰值；

3）在其他外部环境不变的情况下，顺风比逆风的阻力值低，海况越差，风向对阻力值的影响越大；

4）总体上来看，外部气温对阻力的影响并不明显，航速在7~27kn时，气垫船装载对阻力值影响有限，但在其他航速下满载时阻力会比空载时阻力大1.1倍左右。

 [1] 全国船舶标准化技术委员会.气垫船静水阻力估算方法[S]. CB*/Z 329-83. [2] 邓佑生.气垫船原理与设计[M]. 北京: 国防科技图书出版, 1991. [3] 李根林, 孙永权. 气垫船的兴波和兴波阻力(续)[J]. 船舶, 1999(2): 58-62. [4] 李根林, 孙永权. 气垫船的动量阻力和喷射阻(推)力(续)[J]. 船舶, 1999(5): 52-60. [5] 李青. 利用数值计算分析阻力性能方法初探[J]. 船舶, 2003(6): 15-18. [6] 王励扬, 翟昆朋, 何文涛, 等. 四阶龙格库塔算法在捷联惯性导航中的应用[J]. 计算机仿真, 2014(11): 56-59. DOI:10.3969/j.issn.1006-9348.2014.11.013 [7] 安卫, 敖晨阳, 刘强. 气垫船垫升推进系统控制仿真[J]. , 2005, 46(4): 104–107.