﻿ 支线型冷藏集装箱船振动特性研究
 舰船科学技术  2019, Vol. 41 Issue (8): 39-43 PDF

Research on vibration characteristics of feeder reefer container vessel
HUANG Jin-tao, WU Gang
Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China
Abstract: In recent years, as rules updating and the improvement of ship owner's requirements for comfort, ship vibration problem has been paid more and more attention. In this paper, the finite element method is used to predict the vibration characteristics of a feeder reefer container vessel from three aspects: the overall longitudinal vibration of the superstructure, overall vibration of hull girder and local structural vibration. For the situation of insufficient vibration characteristics, an improved scheme is proposed to make the vibration level meet the requirements of relevant standards. Besides, the forecast method of the overall longitudinal vibration of the container in the early design stage is discussed. The conclusions obtained in the calculation analysis can be used for the design of the same type of ship.
Key words: feeder reefer container vessel     vibration characteristics     superstructure     overall longitudinal vibration
0 引　言

1 船型主要参数及主要激励 1.1 船型主要参数

1.2 主要激励

 图 1 满载工况下1倍叶频时的船体表面力 Fig. 1 Distribution of pressure amplitudes for 1st blade order at full load condition

 图 2 压载工况下1倍叶频时的船体表面力 Fig. 2 Distribution of pressure amplitudes for 1st blade order at ballast draft condition

2 计算模型 2.1 结构有限元模型

 图 3 整船结构有限元模型 Fig. 3 Finite element model of whole ship structure
2.2 质量配载

3 不同模型上层建筑整体纵向固有频率比较

 图 4 典型的计算模型 Fig. 4 Typical calculation model

4 船体梁总振动评估 4.1 船体梁模态分析

4.2 频率响应分析

 图 5 压载到港99.4 r/min响应值 Fig. 5 Results of vibration response at 99.4rpm for ballast at arrival

 图 6 满载出港99.4 r/min响应值 Fig. 6 Results of vibration response at 99.4rpm for fully loaded at departure

 图 7 压载到港最大响应值 Fig. 7 Max. response for ballast at arrival

 图 8 满载出港最大响应值 Fig. 8 Max. response for fully loaded at departure

5 船体局部振动分析

 图 9 机舱区域主甲板平面图 Fig. 9 Main deck in engine room area

 图 10 机舱区域主甲板模型 Fig. 10 FEM model of main deck in engine room area

6 结　语

1）在详细设计初期，对该船的总布置进行局部调整优化。首先，考虑到集装箱船上层建筑高耸以及脱硫塔安装位置高、质量大，烟囱结构与上层建筑和机舱棚采用整体式设计；其次，在满足规格书要求的前提下，优化舱室布置，将内外围壁上下对齐，保证结构的连续性和载荷良好的传递，降低上层建筑振动风险。

2）短而高的尾置上层建筑，容易引发纵向振动问题，因而方案设计早期进行上层建筑纵向振动固有频率预报很有必要。计算分析指出模型A进行上层建筑整体纵向振动固有频率的预报结果精度较高，当图纸资料欠缺时，可采用简化模型C进行粗略估算，以提高早期船型研发时的预报能力。

3）螺旋桨叶频激励以及主机的1阶或2阶垂向不平衡力矩是引起船体梁垂向振动的主要原因，主机的H型倾覆力矩、激励较大的X型倾覆力矩对局部横向振动影响较大。8缸机的机型特点是无2阶不平衡力矩且1阶的不平衡力矩较小，5阶X型不平衡力矩最大。计算结果表明，1阶垂向不平衡力矩和5阶X型不平衡力矩并未成为主要激励源。

4）考虑船尾线型抬升较高，船体水平方向的刚度大而垂向刚度较弱，同时螺旋桨引起的表面力以垂直方向为主，船体尾部的垂向振动也需引起关注。

5）局部振动可通过调频使结构的固有频率与激励频率错开，以避免明显的结构共振发生，如增加支柱、大肘板、纵桁或强横梁等。

 [1] 赵耕贤. 船舶与海洋结构物设计中的关键技术之一船舶振动[J]. 船舶, 2001(5): 34-42. ZHAO Gengxian. Ship vibration-one of key design factors for ship and offshore structure[J]. Ship & Boat, 2001(5): 34-42. DOI:10.3969/j.issn.1001-9855.2001.05.008 [2] 金咸定, 夏利娟. 船体振动学[M]. 上海: 上海交通大学出版社, 2011. [3] 中国船级社.《船上振动控制指南》(2012)[M].2011. [4] 杨剑, 张璞, 陈火红. 新编MD Nastran有限元实例教程[M]. 北京: 机械工业出版社, 2008. [5] 周清华, 李祥宁, 胡要武. 滑行艇尾部结构的模态分析和响应预报[J]. 舰船科学技术, 2011, 33(7): 36-39. ZHOU Qing-hua, LI Xiang-ning, HU Yao-wu. Vibration mode analysis and response prediction of stern structure for planing boat[J]. Ship science and technology, 2011, 33(7): 36-39. DOI:10.3404/j.issn.1672-7649.2011.07.008 [6] O.M.帕利, 等. 船舶结构力学手册[M]. 徐秉汉, 等. 北京: 国防工业出版社, 2002. [7] 殷玉梅, 赵德有. 船舶上层建筑整体纵向振动固有频率预报方法研究[J]. 船舶力学, 2011, 15(5): 538-544. YIN Yu-mei, ZHAO De-you. Study on predicting method of natural frequency for superstructure’s overall longitudinal vibration[J]. Journal of Ship Mechanics, 2011, 15(5): 538-544. DOI:10.3969/j.issn.1007-7294.2011.05.013 [8] ISO 6954-2000, Guidelines for the measurement, reporting and evaluation of vibration with regard to habitability on passenger and merchant ships[S]. [9] 许军, 张辉. 某油船局部振动分析与优化研究[J]. 船舶设计通讯, 2018(1): 36-40. XU Jun, ZHANG Hui. Analysis and Optimization of Local Vibration of an Oil Tanker[J]. Journal of ship design, 2018(1): 36-40. DOI:10.3969/j.issn.1001-4624.2018.01.007