﻿ 大中型舰船柴油机排气泄漏风险评估和监控需求研究
 舰船科学技术  2019, Vol. 41 Issue (6): 110-114 PDF

1. 海军驻葫芦岛431厂军事代表室，辽宁 葫芦岛 125004;
2. 武汉第二舰船设计研究所，湖北 武汉 430000

Risk analysis study of marine diesel engine exhaust leakage
TANG Xiong-hui1, CHEN Liang2, YU Tao2, SU Hong-tao2
1. Navy Military Representative Department Resident in The 431 Plant, Huludao 125004, China;
2. Wuhan Second Ship Design and Research Institute, Wuhan 430064, China
Abstract: For diesel-powered transmission, the harmful gas concentration in the cabin may be increased due to exhaust leakage or secondaryinhalation during the working of the diesel engine. In order to evaluate the influence of the accidentCO in diesel exhaust is used as a characteristic pollutant. Using the multi-zone simulation method, the variation of CO concentration in a typical cabin under different exhaust leakage levels and secondary intake levels is analyzed. The resultsshow that the exhaust leakage rate of 4% will lead to a sharp increase of CO concentration in the diesel engine cabin, which will exceed the allowable concentration of 90d.9% of the exhaust intake ratewilllead to the equilibrium concentration of all compartments exceeding the allowable concentration of 90d. Combined with the analysis results, it is recommended to install a CO monitoring device that can respond quickly in the diesel engine compartment.
Key words: diesel exhaust     mutil-zone simulation     indoor air quality (IAQ)
0 引　言

1 多区域网络模拟方法 1.1 多区域模拟数学描述

 $f_{i - j}^e = f_{i - j}^e(P_i^e - P_j^e) {\text{。}}$ (1)

 $\sum\limits_{j = 1}^N {{F_{i - j}} = 0} {\text{。}}$ (2)

 $\begin{array}{l} V\frac{{{\rm d}{C_i}}}{{{\rm d}t}} = {\rm{aPV}}{{\rm{C}}_0}(t) + n\left( {1 - h} \right)V{{\rm{C}}_0}(t)- \\ {V_{source}}(t) - \left( {a + n} \right)V{C_i}(t) - {h_r}{n_r}V{C_i}(t){\text{。}} \end{array}$ (3)

1.2 CONTAM介绍

CONTAM是由美国国家标准技术研究院（NIST, National Institute of Standards and Technology）研发的多区域气流和污染物传播分析软件，可以帮助用户研究：①流场和压力：如渗透，由机械通风引起的区间气流和压差，作用于建筑物外表面的风压，室内外压差导致的浮力作用；②浓度场：由上述流动引起的污染物传播，化学元素及放射性化学元素的反应，建筑物材料的吸附、解吸附作用，过滤，建筑物表面沉积；③个人暴露：即预测建筑物内人暴露于污染物中感染的风险概率[14]。从1989年开发的软件雏形AIRNET至今，已经发展到3.2版本[15]

2 研究方法

 图 1 柴油机工作时舱室通风示意图 Fig. 1 Schematic diagram of the compartment ventilation during diesel generator working

1）舱室及外界环境初始CO浓度为0，除了排气泄漏或二次吸入导致的CO浓度增加外，舱室不存在其他CO散发源；

2）CO在传播过程中不发生二次转化反应；

3）柴油机运行时工况稳定，排气中CO浓度保持恒定；

4）舰船舱室环境温度保持恒定。

 图 2 船舶舱室CONTAM模型 Fig. 2 CONTAM model diagram of the ship

3 计算结果 3.1 柴油机排气泄漏的影响分析

 图 3 不同排气泄漏率下柴油机舱CO浓度变化曲线 Fig. 3 Variation curve of CO concentration in diesel generatorcompartment under different exhaust leakage rate

3.2 柴油机排气二次吸入的影响分析

 图 4 不同排气吸入率下柴油机舱CO浓度变化曲线 Fig. 4 Variation curve of CO concentration in diesel generator compartment under different exhaust intake rate

 图 5 不同排气吸入率下生活区CO浓度变化曲线 Fig. 5 Variation curve of CO concentration in living compartments under different exhaust intake rate

4 结　语

 [1] KHAIR M K, MAJEWSKI W A. Diesel emissions and their control[M]. SAE International, 2006. [2] NRC. Emergency and continuous exposure guidance levels for selected submarine contaminants[R]. National Academy Press, Washington D. C., 2007. [3] DIAMONDD, LUNN M, BOLLAN H. Royal navy submarine air purification-current and future[C]//31st International Conference on Environmental Systems, Orlando, Florida, 2001, 7: 9–12. [4] PEEL A E, ARSAC F, JOUANDON E. Control of the submarine atmosphere in the French navy[C]//AIAA 40th International Conference on Environmental Systems, Barcelona, Spain, 2010. [5] 李军. 舰船密闭舱室空气净化系统数学模型及其分析[J]. 舰船科学技术, 2004, 26(S1): 41-45. LI J. Mathematical model and analysis of air purification system of hermetic ship cabin[J]. Ship Science and Technology, 2004, 26(S1): 41-45. [6] 李永强, 郑贤德. 电算求解密闭舱室空气净化方程[J]. 船海工程, 2003(6): 21-23. LI Y Q, ZHENG X D. Solving the air purification equation of airtight cabin by computer[J]. Ocean Engineering, 2003(6): 21-23. DOI:10.3963/j.issn.1671-7953.2003.06.009 [7] 赵彬, 陈玖玖, 陈曦. 室内颗粒浓度影响因素的集总模型分析[J]. 清华大学学报(自然科学版), 2005, 45(12): 1589-1591. ZHAO B, CHEN J J, CHEN X. Analysis of factors influencing indoorparticle concentration using thelumped parameter model[J]. J Tsinghua Univ (Sci & Tech), 2005, 45(12): 1589-1591. DOI:10.3321/j.issn:1000-0054.2005.12.003 [8] DOWDING C, TOFT G, TAYLOR T. BREATH computer modeling of submarine-atmosphere purge regimes. Proceedings of the Submarine air Monitoring and Air Purification International Symposium, 5～8 October 2015, Den Helder, The Netherlands. [9] 王骁, 唐熊辉, 余涛, 等. 舰船舱室通风系统效能评估[J]. 舰船科学技术, 2018, 40(1): 139-142. WANG X, TANGX H, YU T, et al. Effectiveness evaluation of cabin ventilation system[J]. Ship Science and Technology, 2018, 40(1): 139-142. DOI:10.3404/j.issn.1672-7649.2018.01.025 [10] 余涛, 周爱民, 沈旭东. 多区域网络模型在船舶舱室污染物传播研究中的应用[J]. 舰船科学技术, 2014, 36(8): 137-141. YU T, ZHOU A M, SHEN X D. Application of multi-zone network model on contaminant transport in ship cabins[J]. Ship Science and Technology, 2014, 36(8): 137-141. DOI:10.3404/j.issn.1672-7649.2014.08.027 [11] 陈树柏. 网络图论及应用[M]. 北京: 科学出版社, 1984. [12] 石兆玉. 流体网络分析与综合[M]. 北京: 清华大学热能工程系, 1993. [13] 王丹. 一种基于总体能量平衡的管网平差计算方法[D]. 重庆: 重庆大学, 2012. WANG D. An algorithm of hydraulic calculations fortube net based on total energy balance[D]. Chongqing: Chongqing University, 2012. [14] Dols W S, Emmerich S J, Polidoro B J. Using Coupled Energy, Airflow and IAQ Software(TRNSYS/CONTAM)to Evaluate Building Ventilation Strategies[J]. Building Services Engineering Research & Technology Bser & T, 2016, 37(2): 163. [15] NIST Technical Note 1887. CONTAM User Guide and Program Documentation (Version 3. 2)(R). [16] 王芳, 陆亚俊. 多区域空气流动网络模型用于室内空气品质和通风模拟研究[J]. 暖通空调HV&AC, 2002, 32(6): 44-46. WANG F, LU Y J. Application of multi-zone modelingsoftwaretoventilation and indoor air quality[J]. HV&AC, 2002, 32(6): 44-46. [17] MAZUREK W. Submarine atmospheres [C]// Air Quality in Airplane Cabins and Similar Enclosed Spaces. Springer Berlin Heidelberg, 2005: 351–382. [18] 冯东辉. 潜艇舱室气体成分集中监测技术[J]. 舰船科学技术, 2001, 23(3): 16-18. [19] 施红旗, 唐熊辉. 潜艇大气环境监测技术发展概况[J]. 舰船科学技术, 2007, 29(5): 43-47. SHI H Q, TANG X H. Application of airmonitoring technology in nuclear submarine[J]. Ship Science and Technology, 2007, 29(5): 43-47.