﻿ 大型船舶变压器预充磁方案研究
 舰船科学技术  2019, Vol. 41 Issue (6): 100-105 PDF

1. 明阳智慧能源集团股份公司，广东 中山 528467;
2. 上海交通大学 电子信息与电气工程学院，上海 200240

Analysis of transformer pre-magnetizing in large marine power system
HUANG Bin1,2, WANG Jie2, CAO Ren-jing1, HUANG Dong-ming1, TAI Neng-ling2, NIU Chuan-kai1
1. Ming Yang Smart Energy Group Co., Ltd., Zhongshan 528467, China;
2. School of Electronic Information and Electrical Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Abstract: This paper presents a scheme of new inrush current suppression for the transformer in large-scale ship power system. When the large transformer is switching on under no-load condition, by detecting and comparing the difference between the load current and the grid side current, the deviation is input to the control module of Novel Preliminary Magnetizing of Transformer (NPMOT). The signal tracks a practical excitation-current profile and then adjusts the NPMOT compensation quantity, thereby suppressing the impact of the magnetizing inrush current of the electric power system of the ship. The test results show that the new transformer inrush current suppression scheme can effectively suppress the inrush current.
Key words: ship power system     inrush current     pre-magnetizing     deviation     transformer
0 引　言

1 预充磁方案的基本原理 1.1 励磁涌流分析

 图 1 变压器T型等效电路图 Fig. 1 Diagram of transformer T-equivalent circuit

 ${N_1}\frac{{{\rm d}{\phi _1}}}{{{\rm d}t}} + {r_1}{i_1} = \sqrt 2 {u_1}\sin (\omega t + \alpha ){\text{，}}$ (1)

 $\phi = - {\phi _m}[\cos (\omega t + \alpha ) - \cos \alpha ]{\text{。}}$ (2)

 $\phi = {\phi _m} - \phi _m^{}\cos \omega t{\text{。}}$ (3)

1.2 NPMOT工作原理

NPMOT输入侧通过小型变压器1与电网的母线并联，小型变压器1给三相不控整流电路升压，通过实时检测负载电流 ${i_L}$ ，与电网电流 ${i_S}$ 进行比较，使用SPWM控制方案对系统进行调节，驱动逆变器。逆变器串联输出电感，通过小型变压器2与电网串联，如图2所示。

 图 2 新型变压器预充磁器示意图 Fig. 2 The new NPMOT schematic diagram

 图 3 NPMOT等效电路图 Fig. 3 NPMOT equivalent circuit diagram

 ${I_{{\rm{Sm}}}} = \frac{{{Z_F} + {Z_a}}}{{{Z_s} + {Z_F} + {Z_a} + K}}{I_{Lm}}{\text{。}}$ (4)
 图 4 NPMOT补偿等效电路 Fig. 4 NPMOT compensation equivalent circuit

$K \gg \left| {{Z_F} + {Z_{a}}} \right|$ 时，可忽略 ${Z_S}$ ${Z_F}$ ${Z_{a}}$ ${I_{{sm}}}$ K值增大而减小，由空载变压器合闸的瞬时电流将流入NPMOT，减少了对系统的冲击。可以看出，励磁涌流的抑制特性主要由K值以及K ${Z_S}$ ${Z_F}$ ${Z_{a}}$ 之间的关系决定。要获得理想的抑制性能，要求K取足够大，但K值的增大也会引起NPMOT容量的增加和系统的不稳定。可见，NPMOT能补偿变压器任意时刻空载合闸所产生的励磁涌流，保证了系统较好的稳定性。

2 控制方法设计

 图 5 控制系统框图 Fig. 5 Control system block diagram

3 新型变压器预充磁装置硬件设计

3.1 小型变压器

NPMOT结构中的小型变压器如图6所示。

 图 6 小型变压器原理图 Fig. 6 Small transformer schematic

 $\frac{{{N_1}}}{{{N_2}}} = \frac{{{U_{in}}}}{{{U_{in1}}}}{\text{。}}$ (5)

3.2 整流逆变部分

NPMOT结构中的整流逆变部分如图7所示。其中 ${U_{in1}}$ ${U_{out1}}$ 为整流逆变部分的输入、输出电压， ${U_{dc}}$ 为直流电压值，C为稳压电容。为了降低成本，提高系统的可靠性，整流侧为三相不可控整流电路，逆变侧为三相全桥可控电路，因此直流电压平均值 ${U_d}$ 为：

 图 7 整流逆变部分原理图 Fig. 7 The section of rectifier inverter schematic
 ${U_d} = 2.34 \times {U_S}{\text{。}}$ (6)

 $C = \frac{{{i_{neff}}}}{{U{}_d{f_{\min }}\gamma }}{K_c}\beta {\text{。}}$ (7)

3.3 滤波输出电感

 $L = \frac{{{U_{ d}} - {U_{S\max }}}}{{\delta {i_{\max }}}}{\text{。}}$ (8)

4 实验测试

 图 8 100 MVA变压器安装NPMOT前、后0.1 s空载合闸时电网侧电流 ${i_S}$ 比较图 Fig. 8 The comparison of gird side current ${i_S}$ when 0.1 s un-load switching on of 100 MVA transformer before and after installation of NPMOT

100 MVA变压器安装NPMOT前、后0.23 s空载合闸电网侧电流 ${i_S}$ 比较图如图9所示。安装NPMOT后，励磁涌流依然可以降到55 A左右，抑制效果比较好。从图8图9可以看出，在安装NPMOT后，系统参数、合闸时间等因素均几乎不会影响抑制励磁涌流的效果。

 图 9 100 MVA变压器安装NPMOT前、后0.23 s空载合闸时电网侧电流 ${i_S}$ 比较图 Fig. 9 The comparison of gird side current ${i_S}$ when 0.23 s un-load switching on of 100 MVA transformer before and after installation of NPMOT

NPMOT输入电流 ${i_{in}}$ 图10所示，在不同时刻变压器空载合闸时， ${i_{in}}$ 的最大电流幅值均小于85 A，因此NPMOT中的小型变压器容量可以选择很小，符合理论分析结果，降低了设备成本，提高了经济安全性。

 图 10 ${i_{in}}$ 电流示意图 Fig. 10 ${i_{in}}$ current diagram

 图 11 30 MVA变压器安装NPMOT前后0.23 s空载合闸时电网侧电流 ${i_S}$ 比较图 Fig. 11 The comparison of gird side current ${i_S}$ when 0.23 s un-load switching on of 300 MVA transformer before and after installation of NPMOT

 图 12 NPMOT输入电流 ${i_{in}}$ 示意图 Fig. 12 NPMOT Input Current ${i_{in}}$ schematic diagram

NPMOT与变压器一次侧串联电阻，变压器一次侧并联变压器，分相合闸等励磁涌流抑制方案比较如表1所示。

5 结　语

 [1] 许实章. 电机学[M]. 北京: 机械工业出版社, 1993. [2] 陈新欣. 复杂船舶电力网络系统的优化设计[J]. 舰船科学技术, 2018, 40(12): 112-114. CHEN Xin-xin. Optimal design of power network system for complex ships[J]. Ship Science and Technology, 2018, 40(12): 112-114. [3] 张琦兵, 邰能灵, 王鹏, 等. 船舶变压器预充磁分析研究[J]. 电力系统保护与控制, 2010, 18(38): 145-149. ZHANG Qi-bing, TAI Neng-ling, WANG Peng, et al. Analysis of transformer pre-magnetizing in marine power system[J]. Power System Protection and Control, 2010, 18(38): 145-149. [4] 陈传忠. 船舶电网谐波的有效抑制方法[J]. 舰船科学技术, 2018, 40(12): 97-99. CHEN Chuan-zhong. Effective suppression method of harmonic in ship power grid[J]. Ship Science and Technology, 2018, 40(12): 97-99. [5] 陈瑞. 预充磁在抑制变压器空载合闸励磁涌流中的作用[J]. 船电技术, 2009, 29(1): 24-26. CHEN Rui. The effect of pro-magnetization at restraining inrush current for switching-in no-load transformer[J]. Marine Electric & Electronic Engineering, 2009, 29(1): 24-26. DOI:10.3969/j.issn.1003-4862.2009.01.010 [6] 宋瑞娟. 船舶中压电力系统的数学建模和PID控制器设计[J]. 舰船科学技术, 2018, 40(4): 88–90. SONG Rui-juan, Mathematical modeling and PID controller design of medium voltage power system for ships[J]. Ship Science and Technology 2018, 40(4): 88–90. [7] 任雅广, 陈次祥. 船用大容量变压器空载合闸及预充磁分析[J]. 机电设备, 2009, 4: 31-33. REN Ya-guang, CHEN Ci-xiang. Analysis of switching on with no load and pre-excitation of marine high-capacity transformer[J]. Mechanical and electrical equipment, 2009, 4: 31-33. DOI:10.3969/j.issn.1005-8354.2009.04.009 [8] 张冬梅, 孙士尉, 刘昕彤, 等. 遗传算法的舰船电力系统供电恢复研究[J]. 舰船科学技术, 2018, 40(6): 73-75. ZHANG Dong-mei, SUN Shi-wei, LIU Xin-tong, et al. Research on power supply recovery of ship power system based on genetic algorithm[J]. Ship Science and Technology, 2018, 40(6): 73-75. DOI:10.3404/j.issn.1672-7649.2018.06.015 [9] 张燕菲, 冯哲. 大型船舶电力系统短路故障诊断方法研究[J]. 舰船科学技术, 2018, 40(10): 94-96. ZHANG Yan-fei, FENG Zhe. Research on short circuit fault diagnosis method of large ship power system[J]. Ship Science and Technology, 2018, 40(10): 94-96. [10] 李晓萍, 文习山, 蓝磊, 等. 单相变压器直流偏磁试验与仿真[J]. 中国电机工程学报, 2007, 27(9): 33-40. LI Xiao-ping WEN Xi-shang LAN Lei, et al. Test and simulation for single-phase transformer under DC bias[J]. Proceedings of the CSEE, 2007, 27(9): 33-40. DOI:10.3321/j.issn:0258-8013.2007.09.007 [11] 田立军, 秦英林, 孙晓明. 变压器空载合闸导致电能质量问题研究[J]. 电力自动化设备, 2005, 25(3): 41-43. TIAN Li Jun. QIN Ying-lin, SUN Xiao-ming. Study of power quality problems caused by no-load transformer commission[J]. Electric Power Automation Equipment, 2005, 25(3): 41-43. DOI:10.3969/j.issn.1006-6047.2005.03.011 [12] BRUNKE J H, FR HLICH K J. Elimination of transformer inrush currents by controlled switching-part Ⅰ: theoretical considerations[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 276-280. DOI:10.1109/61.915495 [13] BRUNKE J H. FR HLICH K J. Elimination of transformer inrush currents by controlled switching-part Ⅱ: application and performance considerations[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 281-285. DOI:10.1109/61.915496 [14] 唐博, 彭安金, 王高丰, 等. 采用选相位关合技术消除变压器空载合闸的励磁涌流[J]. 电气开关, 2007, 45(3): 22-25. TANG Bo, PENG An-jin, WANG Gao-feng. et al. Elimination of inrush currents by controlled switching when energizing no-load transformer[J]. Electric Switcher, 2007, 45(3): 22-25. DOI:10.3969/j.issn.1004-289X.2007.03.009 [15] CHENG C K, CHEN J F, LIANG T J, et al. Transformer design with consideration of restrained inrush current[J]. International Journal of Electrical Power and Energy Systems, 2006, 28(2): 102-108. DOI:10.1016/j.ijepes.2005.11.003 [16] CHENG C K, DER CHEN S, CHEN J F, et al. Transformer design for reducing the inrush current by asymmetrical winding[J]. Journal of the Chinese Institute of Engineers Transactions of the Chinese Institute of Engineers Series A, 2005, 28(5): 811-818. [17] 郝治国, 张保会, 褚云龙, 等. 变压器空载合闸励磁涌流抑制技术研究[J]. 高压电器, 2005, 41(2). HAO Zhi-guo, ZHANG Bao-hui, CHU Yun-long, et al. Study on inrush current restraining technology when energizing no-load transformer[J]. High Voltage Apparatus, 2005, 41(2). DOI:10.3969/j.issn.1001-1609.2005.02.006 [18] ABDULSALAM S G, XU W. A sequential phase energization method for transformer inrush current reduction-transient performance and practical considerations[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 208-216. DOI:10.1109/TPWRD.2006.881450