﻿ 基于数值仿真的船用阀门声学性能对比分析
 舰船科学技术  2019, Vol. 41 Issue (6): 81-84 PDF

Comparative analysis on acoustic performances of marine valves based on numerical simulation
LIU Yang, ZHANG Sheng-le, WU Liang
Wuchang Shipbuilding Industry Group Co., Ltd., Wuhan 430060, China
Abstract: In this paper, in view of the characteristics of the flow-noise, created by marine valves of piping systems, the acoustic performances of marine valves on different types and specifications are researched. After establishing the flow geometric model, the flow-noise in the internal fluid channel is accomplished with the common Computational Fluid Dynamics software Fluent. Finally we determine its advantages and disadvantages through quantitative comparison. The results show that the ball valve has better acoustic performance than other types of valves, this method can provide a certain theoretical basis for the valve selection.
Key words: marine valves     acoustic performances     flow-noise     valve selection
0 引　言

1 仿真方法 1.1 阀门流道建模

1.2 仿真对象

 图 1 典型阀门流体通道的几何模型 Fig. 1 Geometric model of typical valve fluid channel
1.3 流体状态

 ${{R}_{e}}=\frac{vd\rho }{\eta }=\frac{2.5\times 0.01\times 1\;025}{1.005\times {{10}^{-3}}}=25\;498\text{。}$ (1)

1.4 基本理论

1）RANS控制方程

 $\frac{\partial \overline{{{u}_{i}}}}{\partial {{x}_{i}}}=0\text{，}\hspace{170pt}$ (2)
 $\rho \frac{\partial \overline{{{u}_{i}}}}{\partial t}+\rho \overline{{{u}_{j}}}\frac{\partial \overline{{{u}_{i}}}}{\partial {{x}_{j}}}=\rho \overline{{{F}_{i}}}-\frac{\partial \overline{p}}{\partial {{x}_{i}}}+\frac{\partial }{\partial {{x}_{j}}}(\mu \frac{\partial \overline{{{u}_{i}}}}{\partial {{x}_{j}}}-\rho \overline{{{{{u}'}}_{i}}{{{{u}'}}_{j}}})\text{。}$ (3)

2）湍流模型

 $\rho \frac{Dk}{Dt}=\frac{\partial }{\partial {{x}_{i}}}\left[ \left( \mu +\frac{{{\mu }_{t}}}{{{\sigma }_{k}}} \right)\frac{\partial k}{\partial {{x}_{i}}} \right]+{{G}_{k}}+{{G}_{b}}-\rho \varepsilon -{{Y}_{M}}\text{，}\hspace{20pt}$ (4)
 $\rho \frac{D\varepsilon }{Dt}\!=\!\frac{\partial }{\partial {{x}_{i}}}\left[ \left( \mu \!+\!\frac{{{\mu }_{t}}}{{{\sigma }_{k}}} \right)\frac{\partial \varepsilon }{\partial {{x}_{i}}} \right]\!+\!{{C}_{1\varepsilon }}\frac{\varepsilon }{k}({{G}_{k}}\!+\!{{C}_{3\varepsilon }}{{G}_{b}})\!-\!{{C}_{2\varepsilon }}\rho \frac{{{\varepsilon }^{2}}}{k}\text{。}$ (5)

 ${{\mu }_{t}}=\rho {{C}_{\mu }}\frac{{{k}^{2}}}{\varepsilon }\text{。}$ (6)
1.5 边界条件

1）入口边界。入口设置为速度入口，方向垂直于边界，大小为2.5 m/s；

2）出口边界。出口设置为Outflow边界条件，即自由出流；

3）壁面。流体通道的壁面采用固壁边界条件，即设定为无滑移条件u=v=ω=0，并在近壁面处设置边界层，加密网格。

1.6 计算方法

 ${{P}_{A}}=\alpha {{\rho }_{0}}\left( \frac{{{u}^{3}}}{l} \right)\frac{{{u}^{5}}}{\alpha _{0}^{5}}\text{，}$ (7)

 ${{P}_{A}}={{\alpha }_{\varepsilon }}{{\rho }_{0}}\varepsilon M_{t}^{5}\text{，}$ (8)

 ${{L}_{P}}=10\ \lg \left( \frac{{{P}_{A}}}{{{\operatorname{P}}_{ref}}} \right)\text{。}$ (9)

2 计算结果比较 2.1 蝶阀（CB/T 3991-2008）声场性能对比

 图 2 最大声功率级对比图 Fig. 2 Maximum sound power level contrast diagram
2.2 球阀（GB/T15185-1994）声场性能对比

 图 3 最大声功率对比图 Fig. 3 Maximum sound power contrast diagram
2.3 截止止回阀（CB 855-2005）声场性能对比

 图 4 最大声功率级对比图 Fig. 4 Maximum sound power level contrast diagram
2.4 截止止回阀（GB/T 585-2008）声场性能对比

 图 5 最大声功率级对比图 Fig. 5 Maximum sound power level contrast diagram
2.5 截止阀（CB 854-2005）声场性能对比

 图 6 最大声功率级对比图 Fig. 6 Maximum sound power level contrast diagram
2.6 节流阀（CB/T 315-1993）声场性能对比

 图 7 最大声功率级对比图 Fig. 7 Maximum sound power level contrast diagram
2.7 相同公称通径、不同参考标准阀门声场性能对比

3 结　语

1）球阀相比其他类型阀门声学性能较优。这是由于球阀全开时其内通道是直通的，球阀通道与管路截面积相差不大，介质流过球阀，与流过一段直通的管子类似，流体畅通，不易产生阀门漩涡，从而降低了湍流脉动噪声，建议在阀门选型时优先选用球阀；

2）其他类型阀门如蝶阀、截止阀以及截止止回阀，由于流体通道的复杂多变，压力脉动较大，而流场的剧烈变化是影响阀门声学性能和产生噪声的重要因素，数值仿真计算结果也表明这几类阀门声学性能较差，建议在阀门选型时尽量回避。

 [1] 刘少刚, 刘海丰, 舒海生, 等. 通海阀内流道优化降低流噪声[J]. 哈尔滨工程大学学报, 2013, 34(4): 511. [2] 江山, 张京伟, 吴崇健, 等. 通海阀内流场的三维数值模拟[J]. 中国舰船研究, 2009, 4(2): 37. DOI:10.3969/j.issn.1673-3185.2009.02.009 [3] ITO K, TAKAHASHI K, INOUE K. Pressure distributions and flow force on the body of a poppet valve[C]// Proceddings of Fourth Bath International, Fluid Power Workshop, Bath: UK, 199l: 123–136. [4] 杨博, 傅立敏. 稳态数值模拟在轿车外气动噪声源预测中的应用[J]. 吉林大学学报: 工学版, 2007, 37(5): 1005-1008. [5] HORVATH Csaba, VAD Janos. Broadband Noise Source Model Acoustical Investigation on Unskewed and Skewed Axial Flow Fan Cascades[J]. Conference on Modelling Fluid Flow, 2009, 9: 682-689. [6] 董仁义, 吴崇健. 基于Lilley宽带声源模型的舵叶流噪声数值模拟研究[J]. 船海工程, 2009, 38(5): 24-26. DOI:10.3963/j.issn.1671-7953.2009.05.006