﻿ 基于STAR-CCM+的潜艇舵翼水动力性能研究
 舰船科学技术  2019, Vol. 41 Issue (6): 37-42 PDF

Research on hydrodynamic performance of submarine rudder wing based on STAR-COM+
LI Shi-qiang, XIAO Chang-run
Naval Engineering University School of Ships and Oceanography, Wuhan 430033, China
Abstract: The design of submarine rudder did not fully consider the influence of submarine wake and propeller, resulting in the fact that the hydrodynamic effect of the rudder deviated from the designed value. In order to understand the influence, Star-CCM+ was used to analyze the influence of prism layer, turbulence model, grid discretization, stationary and unsteady methods on the open rudder. And the best physical model was chosen for calculating the submarine SUBOFF Single rudder, direct rudder and pitchup working condition. The hydrodynamic calculation results were compared with the experimental values of the pool and the wind tunnel. The impact of the wake of the hull on the rudder wing was analyzed, the hydrodynamic influence of the hull on the rudder provides a reference for optimizing the design of the submarine's rudder wing to improve the maneuverability of the submarine and reduce the noise.
Key words: STAR-CCM+     SUBOFF sternplane     rudder angle     pitchup     vorticity
0 引　言

1 敞水舵水动力分析

1.1 研究对象

1.2 棱柱层网格研究

 ${y^ + } = 0.172\frac{{\Delta y}}{L}{{ {Re}} ^{0.9}}\text{。}$

 图 1 不同增长因子下升力系数的数值结果与试验值 Fig. 1 Experimental and numerical value of lift coefficients based on different PLS

 图 2 不同基础尺寸下升力系数数值 Fig. 2 Numerical value of lift coefficients based on different base size

1.3 物理模型研究

 图 3 不同湍流模型下升力系数的数值 Fig. 3 Numerical value of lift coefficients based on different turbulence models

2 SUBOFF潜艇上单独舵的水动力性能分析 2.1 计算模型及网格划分

 图 4 舵叶面网格 Fig. 4 The rudder blade grid

 图 5 舵附近棱柱层网格 Fig. 5 Prism layers grid around the rudder
2.2 不同舵角下升阻性能研究

 图 6 不同湍流模型下升力系数的数值 Fig. 6 Numerical value of lift coefficients based on different turbulence models

3 SUBOFF潜艇直航打舵水动力性能分析 3.1 计算模型网格划分

SUBOFF的实验研究表明，艇体的无因次水动力系数随着雷诺数改变而变化，但当雷诺数达到1×107～1.5×107时，可以忽略雷诺数影响和尺度效应。计算时来流速度选为3.343 9 m/s，Re=1.6×107

 图 7 计算域几何 Fig. 7 Geometry of computation domain

 图 8 艇体表面及域剖面网格 Fig. 8 Mesh for submarine and cross-sections of computation domain
3.2 不同舵角下SUBOFF潜艇水动力性计算

 图 9 一纵剖面处速度大小 Fig. 9 Velocity magnitude at one longitudinal profile

 图 10 直航打舵10°迎流面压力云图 Fig. 10 The pressure cloud picture of one sternplane′s upstream face, 10°sternplane angle

 图 11 敞水舵10°迎流面压力云图 Fig. 11 The pressure cloud picture of one sternplane′s downstream face, 10°sternplane angle, open-water

 图 12 直航打舵10°背流面压力云图 Fig. 12 The pressure cloud picture of one sternplane′s downstream face, 10°sternplane angle

 图 13 敞水舵10°背流面压力云图 Fig. 13 The pressure cloud picture of one sternplane′s downstream face, 10°sternplane angle, open-water

 图 14 敞水舵10°迎流面涡强（Q-criterion） Fig. 14 The vortex magnitude of one sternplane′s upstream face, 10°sternplane angle, open-water

 图 15 敞水舵10°背流面涡强（Q-criterion） Fig. 15 The vortex magnitude of one sternplane′s downstream face, 10°sternplane angle, open-water
4 SUBOFF潜艇斜航时水动力性能分析

 图 16 垂向力 Fig. 16 Normal force

 图 17 纵倾力矩 Fig. 17 Pitching moment

 图 18 垂向力和力矩随攻角变化 Fig. 18 Effect of angle of attack on the normal force and pitching moment

 图 19 冲角10°斜航艇体各站涡量分布 Fig. 19 Contours of vorticity magnitude at nine axial station, 10°angle of attack, pitchup

 图 20 舵角10°直航艇体各站涡量分布 Fig. 20 Contours of vorticity magnitude at nine axial station, 10°sternplane angle

 图 21 冲角20°斜航艇体各站涡量分布 Fig. 21 Contours of vorticity magnitude at nine axial station, 20°angle of attack, pitchup

 图 22 舵升力系数随攻角变化 Fig. 22 Effect of angle of attack on lift coefficient for one sternplane

 图 23 舵总阻力系数随攻角变化 Fig. 23 Effect of angle of attack on drag coefficient for one sternplane

 图 24 舵粘压阻力系数随攻角变化 Fig. 24 Effect of angle of attack on viscous pressure resistance coefficient for one sternplane

 图 25 舵摩擦阻力系数随攻角变化 Fig. 25 Effect of angle of attack on friction resistance coefficient for one sternplane

5 结果分析

6 结　语

1）壁面y+对计算结果的影响较大，应用 $k - \varepsilon$ 本文将其绝大部分控制在30～150之间，计算效果较好；

2）对比敞水舵、潜艇直航打舵及斜航时舵的水动力性能，针对关心的艇体干扰问题，得出了由于艇体的干扰舵升力性能下降很大的结论；

3）实际潜艇尾操纵面由舵与稳定翼两部分构成，稳定翼的存在会对舵的水动力性能产生类似艇体伴流场的影响，通过研究指明了改善艇体、舵和稳定翼结构布局的重要性；

4）通过对涡量的可视化研究，可以发现涡流较强的位置就是舵升力性能变差的位置，要想降低涡激振动以及噪声，流场的精确控制必不可少，这将催生对传统潜艇附体结构的改进研究热潮。

 [1] ANSYS AF. 14.0 Theory Guide[J]. ANSYS inc, 2011. [2] THOMAS P D, MIDDLECOFFEE J. F.. Direct Control of the Grid Point Distribution in Meshes Generated by Ellipitic Equations[J]. AIAA Journal, 1980, 18: 652-656. DOI:10.2514/3.50801 [3] 陆惠生, 朱文蔚, 费乃振, 等. 敞水舵的试验研究[J]. 上海交通大学学报, 1981(2): 001. LU Hui-sheng, ZHU Wen-wei, FEI Nai-zhen, et al. Experiment study on open rudders[J]. Journal of ShanghaiJiaotong University, 1981(2): 001. [4] 苏玉民, 庞永杰. 潜艇原理[M]. 哈尔滨: 哈尔滨工程大学出版社, 2013. [5] GROVES N C, HUANG T T, CHANG M S, et al. Geometric characteristics of DARPA (defense advanced research projects agency) SUBOFF models (DTRC Model Numbers 5470 and 5471)[J]. Geometric Characteristics of Darpa Suboff Models, 1989. [6] WHITFIELD C C. Steady and unsteady force and moment data on a DARPA2 submarine[J]. Virginia Tech, 1999. [7] BREUER M, JOVICIC N, MAZAEV K. Comparison of DES, RANS, and LES for the separated flow around a flat plate at highincidence[J]. International Journal for Numerical Methods in Fluids, 2003, 41(4): 357-388. DOI:10.1002/(ISSN)1097-0363