﻿ 基于船-水-冰耦合技术的撞击参数对船冰碰撞性能的影响
 舰船科学技术  2019, Vol. 41 Issue (6): 19-23 PDF

1. 江苏科技大学，江苏 镇江 212003;
2. 浙江大华技术股份有限公司，浙江 杭州 310000;
3. 上海外高桥造船有限公司，上海 200137

Influence of impact parameters in ship-ice colisions based on coupling of ship-water-ice technology
ZHANG Jian1, WANG Fu-chao1,2, LIU Hai-dong3, XU Jun-hua1
1. Jiangsu University of Science and Technology, Zhenjiang 212003, China;
2. Zhejiang Dahua Technology Co., Ltd., Hangzhou 310000, China;
3. Shanghai Waigaoqiao Shipbuilding Co., Ltd., Shanghai 200137, China
Abstract: The bow of the polar ships is choosed as the object of study. The ship-water-ice coupling technique based on the fluid-solid coupling algorithm is developed to study structure response of a three-dimensional ship bow and ice body collision and this paper successfully resolved the way of fluid-structure coupling and the ship-ice coupling . Considering the synchronous damage of the ship and the ice and the nonlinear finite element software Ls-dyna is used to study the collision between the bow with the different mass of ice and angles under the ship ice collision structure response of various schemes. Then, the simulation results reveal the features of the ship deformation, impact force on the collision of the ship and ice under various programs. All of above can also provide technical supports for the future ship-ice collision study.
Key words: ship ice collision     coupling of ship-water-ice     impact parameters     structural response
0 引　言

1 船-水-冰耦合技术及船体碰撞模型

1.1 流固耦合

1.2 碰撞模型

 图 1 船首网格划分图 Fig. 1 Bow grid division diagram

 图 2 船冰碰撞有限元模型 Fig. 2 Ship ice collision finite element model
1.3 碰撞方案

 图 3 船-水-冰耦合碰撞模型图 Fig. 3 Ship - water - ice coupling collision model diagram
2 计算结果 2.1 冰体质量对船冰碰撞的影响

 图 4 不同工况下碰撞力时历曲线 Fig. 4 The time history of the collision force of different conditions

 图 5 不同冰体尺寸下船首外板的变形损伤和应力分布图 Fig. 5 The damage deformation and stress patter of bow plate under different ice sizes

 图 6 不同冰体尺寸下舷侧纵骨的变形损伤和应力分布图 Fig. 6 The damage deformation and stress patter of side longitudinal under different ice sizes

 图 7 不同工况下冰体变形损伤和应力分布图 Fig. 7 The damage deformation and stress patter of ice under different conditions
2.2 撞击角度对船冰碰撞的影响

 图 8 不同角度下碰撞力曲线对比图 Fig. 8 The time history of the collision force at different angles

 图 9 不同角度下船首外板和冰体的变形损伤及应力分布图 Fig. 9 The damage deformation and stress patter of bow plate and ice at different angles
3 结　语

1）采用船-水-冰耦合技术考虑了船冰碰撞过程中周围流畅、自身结构等因素的影响，最大限度模拟了船冰碰撞真实场景，有效分析船冰碰撞过程中碰撞力与损伤变形情况，随着计算机的不断更新，将来必会成为船冰碰撞可取而又实用的方法。

2）船冰碰撞过程中碰撞力均呈现明显的非线性，碰撞力一致地以波动状态逐渐上升。随着冰体尺寸的增加，碰撞力曲线波动幅度较缓，峰值变大。撞击角度的改变对碰撞力的走势影响不大，但随着碰撞角度的变大，碰撞力峰值在下降，同时每条碰撞力曲线出现波峰波谷的时间和次数是不同的。

3）船-水-冰耦合的碰撞过程中，并不考虑水的研究结果差别不大，船体结构与冰体损伤具有明显的局部性，但水介质在一定程度上减缓了冰体对船体的损伤破坏。只有撞击角度的改变才会影响船体构件的失效次序，冰体大小会影响船体构件损伤程度。冰体尺寸越小，与船体接触为棱角的冰体撞击破裂、失效越严重。

 [1] PAIK J K, PETERSEN P T. Modeling of the mechanics in ship collisions[J]. Ocean Engineering, 1996, 23(2): 107-142. DOI:10.1016/0029-8018(95)00021-6 [2] 张健, 万正权, 陈聪. 船-冰碰撞载荷下球鼻艏结构动态响应研究[J]. 船舶力学, 2014(1-2): 106-114. [3] LEE S G, LEE J S, BAEK Y H, etal. Structural safety assessment in membrane-type CCS in LNGC under iceberg collisons [C]// ICSOT2009, International Conference on Ship and Off shore Technology, Busan, Korea, 2009: 69–81. [4] ZHANG Jian, HE Wen-xin, YUAN Zhi-ming, CHEN Cong. Study on the Structural Strengthening Design under the Ship-ice Collision Load[J]. Journal of Ship Mechanics, 2016, 20(6): 722-735. [5] GAGNON, R. First results of numerical simulations of bergy bit collisions with the CCGS terry fox icebreaker [C]. Proc. Of the 18th int. ass. For the hydro-enviroment eng. And research (IAHR) symp. On ice, 2006, Aug. 28-Sep. 1, Sapporo, Japan. [6] 刘昆, 王自力. 基于全耦合技术的船体结构碰撞性能研究[J]. 船舶力学, 2015, 19(50): 574-581. [7] 姜兴家, 张鹏, 吴文锋. 撞击位置和初速度对被撞船舶舷侧结构的影响[J]. 中国航海, 2012, 35(2): 76-80. DOI:10.3969/j.issn.1000-4653.2012.02.017 [8] 张健, 张淼溶, 万正权, 等. 冰材料模型在船-冰碰撞结构数值仿真中的应用研究[J]. 中国造船, 2013(4): 100-107. DOI:10.3969/j.issn.1000-4882.2013.04.012