﻿ 雷-靶碰撞结构动态响应试验与仿真分析
 舰船科学技术  2019, Vol. 41 Issue (4): 148-153 PDF

Research on dynamic response test and numerical simulation of the torpedo impacting the target
LI Jing-xiao, CHEN Yan-yong, ZHANG Tao, XU Da
The 705 Research Institute of CSIC, Kunming 650118, China
Abstract: The target typical structure damage deformation and dynamic response during the process of torpedo impacting was studied experimentally, firstly, the two impacting condition was predicted by FEM numerical simulation, then, the effects of impact parameters on results was studied experimentally. The result show that the faster of the striker, the target deformation is more obvious, and acceleration response is more rapid. The thicker of target thickness, the target deformation is weakened, and acceleration response is also more rapid. And the results of two methods were compared, the result show that the result based on test and numerical simulation are well matched, the numerical simulation method in the paper can predict the dynamic response during the torpedo impacting the target.
Key words: impact of torpedo on target     model test     non-linear finite element analysis     structural response
0 引　言

1 靶板典型结构碰撞仿真预测

1.1 有限元模型 1.1.1 撞头模型

 图 1 撞头有限元模型 Fig. 1 The FEM model of striker
1.1.2 靶板模型

 图 2 靶板及限位框有限元模型 Fig. 2 The FEM model of target and bounding box
1.1.3 撞头与靶板约束和定位

 图 3 靶板约束图 Fig. 3 The constraint of target
1.2 计算相关参数设定 1.2.1 材料失效条件

1.2.2 接触与摩擦

 ${{F}_{f}}=\mu {{F}_{N}}\text{。}$ (1)

 $\mu ={{\mu }_{k}}+({{\mu }_{s}}-{{\mu }_{k}}){{e}^{-\beta v}}\text{。}$ (2)

1.3 仿真结果与分析 1.3.1 靶板变形

 图 4 工况1靶板变形图 Fig. 4 The target deformation on test condition 1

 图 5 工况2靶板变形图 Fig. 5 The target deformation on test condition 2
1.3.2 撞头加速度变化

 图 6 仿真与试验所得加速度响应对比 Fig. 6 The comparison of acceleration response

2 靶体典型结构碰撞试验 2.1 试验模型

2.2 试验原理

2.3 试验结果与分析 2.3.1 不同撞击速度下靶板变形及加速度响应

 图 7 不同撞击速度下靶板变形图 Fig. 7 The target deformation on different impacting velocity

 图 8 不同撞击速度下撞头监测点加速度响应 Fig. 8 The acceleration response of check point on different impacting velocity
2.3.2 不同厚度下靶板变形及加速度响应

 图 9 不同靶板厚度下靶板变形图 Fig. 9 The different thickness target deformation

 图 10 撞头撞击不同厚度靶板加速度响应时历曲线 Fig. 10 The acceleration response of check point on different target thickness
3 结　语

1）由试验结果分析可得，靶板在受撞击后其变形主要表现为靶板中心撞击区域的凹陷以及约束边界的绕曲，而靶板出现破坏时呈现为花瓣形破口，破口形状与撞头形状相吻合。同时随着撞击速度的增加，靶板变形程度更加剧烈，约束失效更为明显，加速度峰值更高，响应更剧烈，符合物理规律。

2）不同板厚对靶板响应也存在一定影响，薄板在高速撞击下会出现破坏，撞头穿过靶板，而随板厚增加靶板变形程度逐渐减小，加速度“拱形”区域出现时间有所延后。对比多工况下试验结果，并结合工程实际，采用2 mm厚度靶板既能满足靶体结构刚度设计要求，又能控制靶体重量。

3）通过与试验结果对比发现，仿真所得靶板变形及加速度响应和试验结果具有良好的一致性，所采用数值仿真方法适用于该问题的分析，并具有较高准确性。

 [1] 肖文勇, 严谨, 岳建军, 等. 鱼雷撞击靶板动态仿真建模方法探讨[J]. 舰船科学技术, 2004(3): 47-50. XIAO Wen-yong, YAN Jin, YUE Jian-jun, et al. Discussions on the dynamic simulation modeling of a torpedo impacting the plate[J]. Ship Science and Technology, 2004(3): 47-50. [2] 南长江, 鲁忠宝, 岳建军. 鱼雷与目标撞击引信部位加速度响应仿真分析[J]. 水下无人系统学报, 2004, 12(4): 000017-20. NAN Chang-jiang, LU Zhong-bao, YUE Jian-jun. Acceleration response simulation and analysis of the fuze upon impact of torpedo on target[J]. Torpedo Technology, 2004, 12(4): 000017-20. [3] 张志强, 李华峰, 张咏鸥. 失效准则在船舶碰撞破坏中的应用研究[J]. 舰船科学技术, 2017, 39(1): 56-62. ZHANG Zhi-qiang, LI Hua-feng, ZHANG Yong-ou. An application research on failure criteria of collision damage in ship structures[J]. Ship Science and Technology, 2017, 39(1): 56-62. DOI:10.3404/j.issn.1672-7619.2017.01.012 [4] 张涛, 陈继恩, 谢凡. 低速撞击下矩形板动态断裂试验及数值仿真[J]. 华中科技大学学报(自然科学版), 2012, 40(5): 37-40, 45. ZHANG Tao, CHEN Ji-en, XIE Fan. Dynamic fracture test and numerical simulation of rectangular plate under low velocity collision[J]. Journal of Huazhong University of Science and Technology (Nature Science), 2012, 40(5): 37-40, 45. [5] 陈凯, 刘均, 张攀. 低速碰撞载荷下钢制波纹夹层板动态响应研究[J]. 舰船科学技术, 2018, 40(1): 27-34. CHEN Kai, LIU Jun, ZHANG Pan. Dynamic response analysis on corrugated metallic sandwich panel under low velocity impact loading[J]. Ship Science and Technology, 2018, 40(1): 27-34. DOI:10.3404/j.issn.1672-7649.2018.01.005 [6] 王自力. 船舶碰撞损伤机理与结构耐撞性研究[D]. 上海: 上海交通大学, 2000. [7] 王自力, 顾永宁. 船舶碰撞动力学过程的数值仿真研究[J]. 爆炸与冲击, 2001(1): 29-34. WANG Zi-li, GU Yong-ning. Numerical simulation of ship collisions[J]. Explosion and Shock Waves, 2001(1): 29-34. DOI:10.3321/j.issn:1001-1455.2001.01.007 [8] 朱新阳, 梅志远, 吴梵. 潜艇典型结构在撞击载荷作用下动态响应的试验研究[J]. 船海工程, 2009, 38(4): 88-91. ZHU XIN-yang, MEI Zhi-yuan, WU Fan. Research on dynamic response test of submarine typical structure unit’s under impact load[J]. Ship&Ocean Engineering, 2009, 38(4): 88-91. [9] 杨桂通, 熊祝华. 塑性动力学[M]. 北京: 科学出版社, 1982 [10] 梅志远. 基于MSC Dytran的潜艇结构撞击强度分析[J]. 计算机辅助工程, 2006(S1): 295-329. MEI Zhi-yuan. Numerical analysis based on MSC dytran collision strength of submarine structure[J]. Computer Aided Engineering, 2006(S1): 295-329.