﻿ 鱼雷水下发射的6-DOF运动仿真
 舰船科学技术  2019, Vol. 41 Issue (4): 137-141 PDF

Simulation for 6-dof movement of underwater torpedo launching
HUA Qi, DUAN Hao, CHEN Jie, LI Chuan-xi, ZHANG Wei-quan, ZHOU Hai-tao
Kunming Institute of Precision Machinery, China Shipbuilding Industry Corporation, Kunming 650118, China
Abstract: In order to describe the movement state of the torpedo after launching outside the tube intuitively and quantitatively, and to study the influence of the distance of the center of mass and the center of buoyancy on the track of torpedo and the attitude angle. The model of Torpedo launching is established, using the overlapping mesh method and 6-DOF method numerically simulates torpedo motion after torpedo launch. The simulation results show that the track of mass center changes with time, the law of the attitude angle change with time, law for the track of torpedo mass center and attitude angle change with the velocity of launch, the effect of the center of mass and center of buoyancy distance on the attitude of the torpedo, and the movement of the torpedo. And the transient velocity field distribution. It provides a theoretical basis for the adjustment and control of the torpedo after launching.
Key words: centroid locus     attitude angle     the distance of center of mass and center of buoyancy     velocity field     overset mesh
0 引　言

1 模型简介 1.1 鱼雷模型 1.1.1 几何模型

 图 1 鱼雷几何模型 Fig. 1 The geometry model of torpedo
1.1.2 网格模型

 图 2 鱼雷及水池网格模型 Fig. 2 The mesh model of torpedo and tank

2 数值仿真 2.1 模型设置

2.2 数值仿真方法简介 2.2.1 重叠网格方法

 图 3 重叠网格模型 Fig. 3 The overset mesh model
2.2.2 6-DOF模型

6-DOF模型采用STAR-CCM+中的六自由度求解模型[4]来定义鱼雷质量、质心位置、转动惯量、发射速度、发射角度等参数，视鱼雷为刚体，将其动量方程和动量矩方程对时间t求导，利用六自由度求解器求解鱼雷运动参数。

3 仿真结果与分析

STAR-CCM+[3]提供强大的后处理功能，用以对计算结果进行分析处理，也可以用可视化方法对鱼雷及水池流场予以显示。本文首先对质心在浮心100 mm前，发射速度为10 m/s的鱼雷进行数值仿真，对比试验数据，分析模型可靠性。

 图 4 速度云图（t=1 s） Fig. 4 Contour of velocity when time is 1 s

 图 5 速度云图（t=2 s） Fig. 5 Contour of velocity when time is 2 s

 图 8 Z轴向位移 Fig. 8 The distance of Z axis

 图 6 压力云图（t=2 s） Fig. 6 Contour of Absolute pressure when time is 2 s

 图 7 X轴向位移 Fig. 7 The distance of X axis

 图 11 鱼雷的X轴向速度 Fig. 11 The velocity of Torpedo on X axis

 图 12 鱼雷的Z轴向速度 Fig. 12 The velocity of Torpedo on Z axis

 图 9 鱼雷X轴向受力 Fig. 9 The force of Torpedo on X axis
 ${{{F}}_{\rm{x}}}{\rm{ = }}{c_x}\rho \frac{{{\nu _x}^2}}{2}{s_m}\text{。}$ (1)

 图 10 鱼雷的Z轴向受力 Fig. 10 The force of torpedo on Z axis
 ${F_z} = P - {c_z}\rho \frac{{{\nu _z}^2}}{2}{s_m}\text{。}$ (2)

 图 13 俯仰角 Fig. 13 The angle of pitch

 图 15 横滚角 Fig. 15 The angle of roll

 图 16 横滚力矩 Fig. 16 The moment of rall

 图 14 俯仰力矩 Fig. 14 The moment of pitch

 ${\varphi _0}{\rm{ = }}\frac{{\Delta {M_p}}}{{Gh}}{\nu ^2} + \frac{{{z_G}}}{h}\text{。}$

4 质浮心间距对运动状态影响

 图 17 质心在浮心前300 mm的速度云图 Fig. 17 Contour of velocity when center of mass at 300 mm before center of buoyancy

 图 18 质心在浮心前100 mm的速度云图 Fig. 18 Contour of velocity when center of mass at 100 mm before center of buoyancy

 图 19 质心在浮心前0 mm的速度云图 Fig. 19 Contour of velocity when center of mass at 0 mm before center of buoyancy

 图 20 质心在浮心后100 mm的速度云图 Fig. 20 Contour of velocity when center of mass at 100 mm behind center of buoyancy

 图 21 质心在浮心前300 mm的速度云图 Fig. 21 Contour of velocity when center of mass at 300 mm behind center of buoyancy

 图 24 鱼雷不同质浮心间距下Z轴向位移 Fig. 24 The displacement of Z-axis with different distance between the center of mass and center of buoyancy

 图 22 鱼雷不同质浮心间距下俯仰角 Fig. 22 The angle of pitch with different distance between the center of mass and center of buoyancy

 图 23 鱼雷不同质浮心间距下的X轴向位移 Fig. 23 The displacement of X-axis with different distance between the center of mass and center of buoyancy
5 结　语

1）鱼雷发射后不同运动时刻的速度云图和压力云图，结合云图分析鱼雷运动状态。

2）得到鱼雷运动的质心轨迹图、姿态角变化，结合受力和力矩对运动轨迹和姿态进行分析，结合运动方程分析了速度变化曲线的原因。

3）研究了不同质浮心间距对于鱼雷发射稳定性的影响，得到质浮心+100 mm时鱼雷航行最平稳，可以作为鱼雷结构设计的参考。

 [1] 段浩. 鱼雷发射技术[M]. 北京: 国防工业出版社, 2015. [2] 潘光. 鱼雷力学[M]. 陕西: 陕西师范大学出版社, 2013. [3] 李明. STAR-CCM+与流场计算[M]. 北京: 机械工业出版社. 2017. [4] 房萍萍. 计及侧向流影响的自治水下航行器6-DOF运动仿真[D]. 天津: 天津大学, 2014. [5] 宋保维. 气动不平衡式鱼雷发射器内弹道流场仿真研究[J]. 鱼雷技术, 2008, 16(2): 46-49. SONG Bao-wei. Simulation of inner trajectory flow field for pneumatic imbalance torpedo launcher[J]. Torpedo Technology, 2008, 16(2): 46-49. DOI:10.3969/j.issn.1673-1948.2008.02.012 [6] 董明阳. 假海试验设施复杂内流场仿真[J]. 鱼雷技术, 2015, 23(1): 66-70. DONG Ming-Yang. Simulation on complicatd inner flow field in false sea test facility[J]. Torpedo Technology, 2015, 23(1): 66-70. DOI:10.3969/j.issn.1673-1948.2015.01.015 [7] 杨壮涛. 小型浮标在波浪作用下运动响应研究[D]. 昆明: 中国舰船研究院, 2018. [8] 曹永辉, 石秀华. 水下航行器轨迹跟踪控制与仿真[J]. 计算机仿真, 2006, 23(7): 19-21. CAO Yong-hui, SHI Xiu-hua. Trajectory tracking control and simulation of AUV[J]. Computer Simulation, 2006, 23(7): 19-21. DOI:10.3969/j.issn.1006-9348.2006.07.006