﻿ 基于充水金属球壳的吸声覆盖层声学特性研究
 舰船科学技术  2019, Vol. 41 Issue (4): 11-18 PDF

Acoustic characteristics of the anechoic coating containing water-filled metal spherical shells
JIANG Min, WANG Gui-bo, ZHANG Ruo-jun, WANG Tian
The 714 Research Institute of CSIS, Beijing 100101, China
Abstract: In order to improve the low-frequency sound absorption performance, an anechoic coating containing water-filled metal spherical shells was proposed, and its sound absorption characteristics were analyzed by finite element method. The results show that the introduction of water-filled metal spherical shells can improve the sound adsorption of original rubber layer; the low-frequency performance of the anechoic coating is significantly improved by the combination of spherical shells with different geometric parameters; the elastic balloon in the shell should be made by rubber of large modulus, otherwise the original performance cannot be maintained under hydrostatic pressure; the sound absorption mechanism of the anechoic coating consists of the resonance of the elastic balloon at low frequency, the deformation of the base material caused by the coupling resonance of the combined structure at medium and high frequencies, and the enhancement of the scattering effect of the coupled resonance on the acoustic wave.
Key words: anechoic coating     water-filled metal spherical shells     resonance coupling     low frequency sound absorption
0 引　言

1 充水金属球壳吸声覆盖层结构

 图 1 充水金属球壳模型 Fig. 1 Sketch of an water-filled metal spherical shell

 图 2 充水金属球壳吸声覆盖层模型 Fig. 2 Sketch of an anechoic coating containing water-filled metal spherical shells
2 计算模型及验证 2.1 吸声覆盖层计算模型

 图 3 单元计算模型 Fig. 3 Simulation model of a unit cell

2.2 模型有效性验证

 图 4 有限元和参考解的吸声系数对比 Fig. 4 A comparison of sound absorption coefficients between FEM results and reference solutions

 图 5 有限元和参考解的吸声系数对比 Fig. 5 A comparison of sound absorption coefficient between FEM results and reference solutions

3 吸声特性计算及影响因素分析

 图 6 充水金属球壳吸声覆盖层的吸声系数 Fig. 6 Sound absorption coefficient of the anechoic coating containing water-filled metal spherical shell

3.1 弹性球材质对吸声性能的影响

 图 7 弹性球材质的影响 Fig. 7 Effect of balloon material on sound absorption coefficient
3.2 球壳开口角度对吸声性能的影响

 图 8 球壳开口角度对吸声系数的影响 Fig. 8 Effect of hole angle of the shell on sound absorption coefficient
3.3 静水压强对吸声性能的影响

 图 9 静水压强下的橡胶球变形 Fig. 9 Deformation of the rubber balloon under water pressure

 图 10 静水压强对吸声系数的影响 Fig. 10 Effect of water pressure on sound absorption coefficient

 图 11 静水压强的硅胶球变形 Fig. 11 Deformation of the silicon rubber balloon under water pressure

 图 12 静水压强对吸声系数的影响 Fig. 12 Effect of water pressure on sound absorption coefficient

3.4 多个球壳结构组合对吸声性能的影响

 图 13 包含多个球壳的仿真模型 Fig. 13 Simulation model of multiple spherical shells

 图 14 多个球壳结构的吸声系数 Fig. 14 Sound absorption coefficient of multiple spherical shells
4 吸声机理分析

4.1 弹性球为硅胶球

 图 15 散射声强 Fig. 15 Scattering sound intensity

 图 16 充水金属球壳吸声覆盖层的吸声系数 Fig. 16 Sound absorption coefficients of the anechoic coating containing water-filled metal spherical shell

 图 17 球壳结构的变形云图和总功率损耗密度云图 Fig. 17 Deformation and total power loss density diagram of spherical shell structures

 图 18 能量耗散功率分布 Fig. 18 Energy dissipation power distribution

 图 19 耗散功率占比 Fig. 19 Dissipated power ratio
4.2 弹性球为橡胶球

 图 20 散射声强 Fig. 20 Scattering sound intensity

 图 21 充水金属球壳吸声覆盖层的吸声系数 Fig. 21 Absorption coefficients the anechoic coating containing water-filled metal spherical shell

 图 22 球壳结构的变形云图和总功率损耗密度云图 Fig. 22 Deformation and total power loss density diagram of spherical shell structures

 图 23 能量耗散功率分布 Fig. 23 Energy dissipation power distribution

 图 24 耗散功率占比 Fig. 24 Dissipated power ratio

5 结　语

 [1] 白国峰.水下消声覆盖层吸声机理研究[D]. 哈尔滨: 哈尔滨工程大学, 2003: 1–73. [2] A PROSPERETTI.. Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids[J]. Journal of the Acoustical Society of America, 1977, 61(1): 17-27. DOI:10.1121/1.381252 [3] PA HUANG, WJ TEAGUE.. Low-frequency reasont scattering of bubble clouds[J]. Journal of Atmospheric and Oceanic Technology, 2000, 17: 847-853. DOI:10.1175/1520-0426(2000)017<0847:LFRSOB>2.0.CO;2 [4] 何祚镛, 王曼. 水下均匀复合结构吸声的理论研究[J]. 应用声学, 1996, 15(5): 6-11. [5] 王曼.水声吸声覆盖层理论与实验研究[D]. 哈尔滨: 哈尔滨工程大学, 2004: 1–108.