﻿ 全附体尾流作用下螺旋桨布局对其水动力性能的影响
 舰船科学技术  2019, Vol. 41 Issue (3): 18-23 PDF

The effect of propeller layout on propeller hydrodynamic performance under the influence of the whole appendages
XI Peng, XIONG Ying, WANG Zhan-zhi
Department of Naval Architecture Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: In order to take research on the effect of propeller layout on propeller hydrodynamic performance under the influence of the whole appendages, a four-propeller surface ship was studied and an integral mathematic model including hull、propellers and appendages was established. Under the influence of the whole appendages, the hydrodynamic performance of propellers is studied through CFD after changing the relative position of propellers. The result shows that propellers efficiency is not sensitive to longitudinal position change of the propellers but the outer propeller hydrodynamic performance sensitive to the transverse position change．When the transverse distance equals a propeller diameter, thrust coefficient of outer propeller improves by 8.9%, torsion coefficient by 5.9% and behind efficiency by 2.8%. The result possess a certain reference value to the engineering application.
Key words: hull-propeller interaction     propeller layout     propeller hydrodynamic performance     RANS
0 引　言

1 数学模型

 $\frac{{\partial \rho }}{{\partial t}} + \frac{\partial }{{\partial {x_i}}}(\rho {u_i}) = 0{\text{，}}$

 $\begin{array}{l} \displaystyle\frac{\partial }{{\partial t}}(\rho {u_i}) + \displaystyle\frac{\partial }{{\partial {x_j}}}(\rho {u_i}{u_j}) = - \displaystyle\frac{{\partial p}}{{\partial x{}_i}} + \\ \displaystyle\frac{\partial }{{\partial {x_j}}}\left[ \begin{array}{l} {\mu _0}(\displaystyle\frac{{\partial {u_i}}}{{\partial {x_j}}} + \displaystyle\frac{{\partial {u_j}}}{{\partial {x_i}}}) - \\ \displaystyle\frac{2}{3}{\mu _0}\displaystyle\frac{{\partial {u_l}}}{{\partial {x_l}}}{\delta _{ij}} \end{array} \right] + \displaystyle\frac{\partial }{{\partial {x_j}}}( - \rho \overline {u_i^{'}u_j^{'}} ) + \rho {f_i}{\text{，}} \end{array}$

2 研究对象

 图 1 螺旋桨模型轮廓 Fig. 1 The profile of the propeller model

 图 2 螺旋桨布置示意图 Fig. 2 Propeller arrangement

 图 3 轴支架和轴包套局部放大图 Fig. 3 Bracket and bossing

 图 4 坐标系示意图 Fig. 4 Coordinate system

 图 5 螺旋桨的布局 Fig. 5 Layout of the propeller

1）改变尺寸A的大小，如表1所示。

2）改变尺寸B的大小，如表2所示。

3 网格划分及边界条件设置

 图 6 模型计算域示意图 Fig. 6 Calculational field

 图 7 尾部包体示意图 Fig. 7 Block of the stern

 图 8 模型首部网格示意图 Fig. 8 Mesh at the bow

 图 9 模型尾部的网格划分 Fig. 9 Mesh at the stern

 图 10 模型船中网格示意图 Fig. 10 Mesh at the middle section of the hull

4 计算结果 4.1 前后桨纵向相对位置的改变

 图 11 外前桨KT随A的变化 Fig. 11 KT curve of the outer propeller

 图 12 外前桨10KQ随A的变化 Fig. 12 10KQ curve of the outer propeller

 图 13 内后桨KT随A的变化 Fig. 13 KT curve of the inner propeller

 图 14 内后桨KQ随A的变化 Fig. 14 10KQ curve of the inner propeller

 ${\eta _{\rm{B}}} = \frac{{T{V_0}}}{{2{\text{π}} nQ}}\text{。}$

4.2 前后桨横向相对位置的改变

 图 15 外前桨KT随B的变化 Fig. 15 KT curve of the outer propeller

 图 16 外前桨10KQ随B的变化 Fig. 16 10KQ curve of the outer propeller

 图 17 内后桨KT随B的变化 Fig. 17 KT curve of the inner propeller

 图 18 内后桨10KQ随B的变化 Fig. 18 10KQ curve of the inner propeller

5 结　语

1）在全附体影响下，随着外前桨逐渐靠近内后桨或者随着前后桨纵向距离变小，内后桨水动力性能基本不变，各参数变化幅度都在0.5%以内，外前桨的船后效率也基本保持不变，这说明外前桨的纵向移动对于前后桨的效率影响不大。

2）在全附体影响下，外前桨向内后桨横向移动的过程中（逐渐靠近内后桨），外前桨的水动力性能变化不大，而内后桨的 ${K_T}$ ${K_Q}$ ${\eta _{{B}}}$ 逐渐增大，这是由于外前桨对内后桨的伴流场产生影响，使其来流速度增加导致的。这说明外前桨的横向移动对内后桨的水动力性能影响较大。当B=1D时，内后桨的推力系数最大增加8.9%，扭矩系数最大增加5.9%，船后效率最大增加2.8%。因此，在工程上考虑四桨布局时，建议将前后桨的横向距离设置为一个螺旋桨直径。

 [1] SIMONSEN C D. Rudder propeller and hull interaction by RANS[D]. Denmark: Technical University of Denmark, 2000: 12–19. [2] CHAO K Y. Numerical propulsion simulation for the KCS container ship[C]//Proceedings of CFD Workshop. Tokyo, 2005: 85–105. [3] PRAKASH M S, SUBRAMANIANV A. Simulation of propeller-hull interaction using ranse solver[J]. The International Journal of Ocean and Climate Systems, 2010, 1(3): 189-208. [4] KIM J. RANS computations for KRISO container ship and VLCC tanker using the WAVIS code[C]//Proceedings of CFD Workshop. Tokyo, 2005: 105–121. [5] 吴召华. 基于体积力法的船桨舵粘性流场的数值研究[D]. 上海: 上海交通大学, 2013. [6] TAHAPAI Y. Comparison of free-surface capturing and tracking approaches in application to modern container ship and prognoses for extension to self-propulsion simulator[C]//Proceedings of CFD Workshop. Tokyo, 2005: 145–167. [7] CHOU S K, CHAU S W, CHEN W C, et al. Computations of ship flow around commercial hull forms with free surface or propeller effect[C]//A Workshop on Numberical Ship Hydrodynamics Proceedings, Gothenburg, 2000. [8] VISONNEAU M, DENG G B, QUEUTEY P. Computation of model and full scale flows around fully-appended ships with an unstructured RANSE solver[C]//26th Symposium on Naval Hydrodynamics. Rome: 2006: 119–132. [9] ZHANG N, ZHANG S L. Numerical simulation of hull/propeller interaction of submarine in submergence and near surface conditions[J]. Journal of Hydrodynamics, Ser.B, 2014, 26(1): 50-56. DOI:10.1016/S1001-6058(14)60006-8 [10] CHOI J E, MIN K S, KIM J H, et al. Resistance and propulsion characteristics of various commercial ships based on CFD results[J]. Ocean Engineering, 2010, 37(7): 549-566. DOI:10.1016/j.oceaneng.2010.02.007 [11] HAN K J, LARSSON L, REGNSTRÖM B. A numerical study of hull/propeller/rudder interaction[C]//Proceedings of 27th Symposium on Naval Hydrodynamics. Korea: 2008: 147–153. [12] ROBERTO M, ANDREA D M. Simulation of the viscous flow around a propeller using a dynamic overlapping grid approach[C]//Proceedings of First International Symposium on Marine Propulsors. Norway: 2009: 32–49. [13] 张志荣, 李百齐, 赵峰. 螺旋桨/船体粘性流场的整体数值求解[J]. 船舶力学, 2004, 8(5): 19-26. DOI:10.3969/j.issn.1007-7294.2004.05.003 [14] 沈兴荣, 冯学梅, 蔡荣泉. 大型集装箱船桨舵干扰粘性流场的数值计算研究[C]//2007年船舶力学学术会议暨《船舶力学》创刊十周年纪念学术会议论文集. 银川, 2007: 152–161. [15] 王金宝, 蔡荣泉, 冯学梅. 计及自由面兴波和螺旋桨非定常旋转效应的集装箱船舶绕流场计算[J]. 水动力学研究与进展(A辑), 2007, 22(4): 491-500. [16] 沈海龙, 郑丰勇, 苏玉民. 基于滑动网格技术的船体和螺旋桨非定常干扰研究[C]//第十四届中国海洋(岸)工程学术讨论会论文集. 呼和浩特, 2009: 357–363. [17] 沈海龙, 苏玉民. 船体黏性非均匀伴流场中螺旋桨非定常水动力性能预报研究[J]. 水动力学研究与进展(A辑), 2009, 24(2): 232-241. [18] 付慧萍. 船桨整体及螺旋桨诱导的船体表面脉动压力计算[J]. 哈尔滨工程大学学报, 2009, 30(7): 728-734. DOI:10.3969/j.issn.1006-7043.2009.07.002 [19] 杨春蕾, 朱仁传, 缪国平, 等. 基于CFD方法的船/桨/舵干扰数值模拟[J]. 水动力学研究与进展(A辑), 2011, 26(6): 667-673. [20] 覃新川, 黄胜, 常欣. 双桨两舵推进系统的水动力干扰研究[J]. 中国造船, 2008, 49(1): 112-116. DOI:10.3969/j.issn.1000-4882.2008.01.018 [21] 王展智, 熊鹰, 齐万江, 等. 船后桨的布局对螺旋桨水动力性能的影响[J]. 哈尔滨工程大学学报, 2012, 33(4): 728-734. [22] 王展智, 熊鹰, 姜治芳. 舵的布置对螺旋桨水动力性能的影响[J]. 华中科技大学学报, 2012, 40(8): 53-56.