﻿ 钢制阻拦索与合成纤维制阻拦索性能分析
 舰船科学技术  2019, Vol. 41 Issue (2): 140-144 PDF

Performance analysis of steel arresting gear cable and synthetic material arresting gear cable
DENG Wen-li, WANG Yue-min, GENG Hai-quan
College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract: As the life line of the carrier-based aircraft, arresting cable directly contacts with the arresting system when hooking. In order to enlarge the capacity tonnage of carrier-based aircrafts, synthetic material arresting gear cable is considered to be a new direction of this field. This study analyzed the structure and test methods of these two kinds of cables, and calculated the strain basing on mathematical model according to the situation of centerline engagement and off-center engagement. The results show that: the steel cable has good tensile strength and impact resistance, while synthetic cable offer great performance in terms of the strength-to-weight, flexibility, bending resistance, impact resistance, and off-center engagement effect.
Key words: arresting cable     synthetic material cable     strain     load
0 引　言

 图 1 MK7-3阻拦装置系统 Fig. 1 MK7-3 aircraft carrier system

 图 2 先进阻拦装置系统 Fig. 2 Advanced aircraft carrier system

1 钢制阻拦索性能分析 1.1 钢制阻拦索特点

 图 3 钢制阻拦索结构示意图 Fig. 3 Structure sketch of steel arresting cable
1.2 钢制阻拦索性能

 图 4 对中阻拦示意图 Fig. 4 Sketch of centerline engagement

 ${{t}_{w}}{ = }{2}{L}{/}{{c}_{w}}{\text{。}}$ (1)

 ${{s}_{{1,w}}} = {{V}_{E}}{{t}_{w}}{\text{，}}$ (2)

 ${{s}_{2}} = \sqrt {{{{(}{a}{/2)}}^{2}} + {{s}_{1}}^{2}} {\text{，}}$ (3)

 ${\Delta L} = {{s}_{2}} - {a}{/2}{\text{，}}$ (4)

 ${{G}_{w}}{ = }{(}{\Delta L}{/}{L}{)}{{E}_{w}}{\text{。}}$ (5)

 图 5 偏心阻拦示意图 Fig. 5 Sketch of off-center engagement

 ${{s}_3} = \sqrt {{{{[(1} - {1/}n{)} \times {a}{]}}^2} + {{s}_1}^2} {\text{，}}$ (6)

 ${\Delta }{{L}^{'}} = {{s}_{3}} - {a}{/}2{\text{，}}$ (7)

 ${G}_{w}^{'} = ({\Delta }{{L}^{'}}{/}L){{E}_{w}}{\text{。}}$ (8)

1.3 钢制阻拦索检测

 图 6 钢丝绳漏磁检测原理 Fig. 6 Principle of wire rope magnetic flux leakage testing structure diagram
2 合成纤维制阻拦索性能分析 2.1 合成纤维制阻拦索特点

 图 7 合成纤维制阻拦索样品[16] Fig. 7 Specimen of synthetic material arresting cable[16]

2.2 合成纤维制阻拦索检测

 图 8 嵌入式分布光纤传感器系统[16] Fig. 8 Embedded distributed fiber optic sensor (EDIFOSTM) system

1）该技术将光纤传感器预埋于阻拦索中，由于光纤传感器传输容量大，能够构成多形式的光线传感网络，可以实现对阻拦索全长度范围的损伤监测。

2）该技术能够实时获取阻拦索内部温度及受力等信息，对结构的完整性、损伤程度等状态进行连续的实时监测，结合损伤评估，能够对阻拦索健康状态进行实时监控，并对使用寿命作出预测。

3)该技术采用将传感器预埋的方式，实时监测阻拦索健康状态，节省了人工检测过程，为阻拦索紧张的复位工作节省时间。

2.3 合成纤维制阻拦索性能

 ${{t}_{s}}{ = 2L}{/}{{c}_{s}}{\text{，}}$ (9)

 ${{s}_{{1,s}}}{ = }{{V}_{E}}{{t}_{s}}{\text{，}}$ (10)

 ${{G}_{s}}{ = }{(}{\Delta L}{/}{L}{)}{{E}_{s}}{\text{，}}$ (11)

 ${G}_{s}^{'}{ = (\Delta }{{L}^{'}}{/}{L)}{{E}_{s}}{\text{。}}$ (12)

 图 9 对中阻拦时G-L曲线 Fig. 9 The G-L curves at centerline engagement

 图 10 应力与偏心程度关系G-n曲线 Fig. 10 The G-L curves at off-center engagement

1）在同样的偏心及对中阻拦情况下，使用钢制阻拦索所受应力载荷比使用合成纤维绳制阻拦索所受拉伸力大很多。

2）阻拦索与阻拦装置距离越远，受到的应力越大，但由于实际结构的需求，两者之间需要有一定的距离，使用合成纤维作为阻拦索也能减少这一拉伸力的增大。

3）偏心阻拦时，阻拦索所受应力会急剧增大，但相对而言，使用合成纤维制阻拦索会减小这一拉伸力的增大。

3 结　语

1）钢制阻拦索具有良好的抗拉强度及抗冲击能力，经过使用和发展积累了大量的经验，但其健康状态检测技术仍然是一个难点。

2）合成纤维制阻拦索具有良好的强度重量比及柔性，降低了系统总惯性，有对应的健康状态监测技术，但其未知的失效模式仍需要进一步深入研究。

3）从目前研究现状看，2种阻拦索各有优缺点，为了满足海军未来的发展需求，加大阻拦索及其检测技术的研究具有重要意义。

 [1] 王海东, 毕玉泉, 杨炳恒, 等. MK7-3阻拦装置拦阻特点分析[J]. 科学技术与工程, 2011, 11(9): 2038-2042. WANG Hai-dong, BI Yu-quan, YANG Bing-heng, et al. Characteristicanalysis of MK7-3 arresting gear[J]. ScienceTechnology and Engineering, 2011, 11(9): 2038-2042. DOI:10.3969/j.issn.1671-1815.2011.09.030 [2] MENDOZA E, PROHASKA J, KEMPEN C, et al. Smart synthetic material arresting cable based on embedded distributed fiber optic sensors[C]//Third European Workshop on Optical Fibre Sensors. Proc of SPIE, USA, 2007. [3] GIBSON P T, ALEXANDER G H, CRESS H A. Validation of design theory for aircraft arresting-gear cable[R]. 0823566, USA. Battelle Memorial Institute Columbus Laboratory, 1968. [4] 张新禹. 阻拦索的动力学特性分析及仿真研究[D]. 哈尔滨: 哈尔滨工程大学, 2011. ZHANG Xin-yu. Dynamic analysis and simulation of arresting cable[D]. Harbin: Harbin Engineering University, 2011. [5] 沈文厚, 赵治华, 任革学, 等. 拦阻索冲击的多体动力学仿真研究[J]. 振动与冲击, 2015, 34(5): 73-77. SHEN Wen-hou, ZHAO Zhi-hua, REN Ge-xue, et al. Multi-body dynamic simulation of impact on cross deck pendant[J]. Journal of Vibration and Shock, 2015, 34(5): 73-77. [6] 聂宏, 彭一明, 魏小辉, 等. 舰载飞机着舰拦阻动力学研究综述[J]. 航空学报, 2014, 35(1): 1-12. NIE Hong, PENG Yi-ming, WEI Xiao-hui, et al. Overview of carrier-based aircraft arrested deck-landing dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 1-12. [7] RINGLEB F O. Cable dynamics[R]. USA: Naval Air Engineering Facility Engineering Department, 1956. [8] 飞机设计手册总编委会. 飞机设计手册. 第14册, 起飞着陆系统设计[M]. 北京: 航空工业出版社, 2002: 271–280. [9] 高泽迥. 飞机拦阻钩振动运动学和拦索动力学研究[J]. 航空学报, 1990, 11(12): 543-546. GAO Ze-jiong. A discussion of bounce kinematics of aircraftarresting hook and cable dynamics[J]. Acta Aeronautica et Astronautica Sinica, 1990, 11(12): 543-546. DOI:10.3321/j.issn:1000-6893.1990.12.005 [10] 柳刚. 舰载飞机着舰拦阻钩碰撞及拦阻动力学研究[D]. 南京航空航天大学, 2009. LIU Gang. Investigation on arresting dynamics for carrierbased aircraft with consideration of arresting hook bounce[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. [11] 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435. ZHEN Zi-yang, WANG Xin-hua, JIANG Ju, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. ActaAeronautica et AstronauticaSinica, 2017, 38(2): 020435. [12] DAVID F N, SCOTT A S. The effect of combat on aircrew subjective readiness and LSO grade during operation desert shield/storm. ADA254841[R]. Pensacola, FL: Naval Aerospace Medical Research Lab, 1992. [13] 张萍, 金栋平. 计及弯折波的舰载机拦阻过程控制[J]. 航空学报, 2011, 32(11): 2008-2015. ZHANG Ping, JIN Dong-ping. Control of arresting process for carrier aircraft considering kink-wave[J]. ActaAeronautica et AstronauticaSinica, 2011, 32(11): 2008-2015. [14] GB/T21837-2008, 铁磁性钢丝绳电磁检测方法[S]. GB/T21837-2008, Practice for electromagnetic examination of ferromagnetic steel wire rope[S]. [15] 杨叔子, 康宜华, 陈厚桂, 等. 钢丝绳电磁无损检测[M]. 北京: 机械工业出版社, 2017: 27–68. [16] MENDOZA E A, KEMPEN C, SUN S, et al. Structural integrity and damage assessment of high performance arresting cable systems using an embedded distributed fiber optic sensor (EDIFOS) system[C]//Fiber Optic Sensors and Applications VII. Proc of SPIE, USA, 2010.