﻿ 基于零维模型的船用共轨增压柴油机硬件在环仿真模型研究
 舰船科学技术  2019, Vol. 41 Issue (2): 99-105 PDF

1. 中国船舶重工集团公司第七一一研究所，上海 201108;
2. 低速机国家工程试验室，上海 201108

Research on hardware-in-the-loop simulation modeling of common rail and turbocharged marine diesel based on zero-dimensional model
LI Jin-hua1,2, CUI Wen-feng1,2, YANG Yong-wen1,2, LIU Jia1,2, ZHU Li1,2
1. Shanghai Marine Diesel Engine Research Institute, Shanghai 201108, China;
2. Low Speed National Engineering Laboratory, Shanghai 201108, China
Abstract: The real time simulation model of common rail and turbocharged marine diesel engine is used on hardware in the loop. The accuracy and real-time of the model should be taken into account. The average value model has good real-time performance, but the accuracy is not high. The accuracy of the quasi-dimensional model is high, but cann't be met the requirement of real time. In the paper, a zero dimension real time simulation model based on the thermodynamic calculation of the 16 cylinders common rail and turbocharged diesel engine is established. Through real time simulation testing, the function, the precision and real-time performance of the model meet the requirement of the hardware in the loop simulation.
Key words: hardware in-the-Loop simulation     common rail and turbocharged diesel engine     real time simulation model
0 引　言

1 建模对象

 图 1 燃油系统结构示意图 Fig. 1 Schematic diagram of fuel system structure

 图 2 气缸和进排气系统结构示意图 Fig. 2 Schematic diagram of the structure of cylinders and intake and exhaust system

2 柴油机实时仿真模型建模

2.1 共轨燃油系统模型建模

 图 3 共轨燃油系统模型示意图 Fig. 3 Schematic diagram of common-rail fuel system model
2.1.1 高压油泵模型

 ${\rm{}}{{{q}}_{{p}}} ={{{V}}_1}{\rm{*}}{{{N}}_{{p}}}{{*n*}}{{{Z}}_{{p}}}{\rm{*}}{{\rm{\eta }}_{{p}}}{\rm{*}}{{\rm{\eta }}_{{c}}}{\text{。}}$ (1)

2.1.2 稳压腔模型

 ${\rm{}}{{{P}}_{{\rm{rail}}}} =\frac{{{{{E}}_{{\rm{fuel}}}}}}{{{{{V}}_{{\rm{rail}}}}}}\mathop \smallint \nolimits {{q}}\left( {{t}} \right){\rm{d}}t =\frac{1}{{{{{C}}_{{H}}}}}\mathop \smallint \nolimits {\rm{\Sigma }}{{{q}}_{{t}}}{\rm{d}}t\text{。}$ (2)

 ${{{E}}_{{\rm{fuel}}}} ={{{C}}_0}{\rm{*}}{\left( {{{p}} + {{{C}}_1} - {{T*}}{{{C}}_2}} \right)^{{{{C}}_3}}}{\rm{}}\text{。}$ (3)

2.1.3 喷油器模型

 ${}^{{\rm d}m}\!\!\diagup\!\!{}_{{\rm d}t}\;=\frac{{{d}_{0}}^{2}*{\text{π}} *{{N}_{noz}}*\mu }{4}*\sqrt{2*\Delta P*\rho } \text{。}$ (4)

2.2 气缸模型

 图 4 气缸模型示意图 Fig. 4 Schematic diagram of cylinders model
2.2.1 缸内容积计算模型

 $\frac{{\rm d}V}{{\rm d}\varphi }=\left[ \sin \left( \frac{{\text{π}}}{180}\varphi \right)+\frac{\lambda }{2}\cdot \frac{\sin \left(\displaystyle\frac{{\text{π}}}{180}\cdot 2\varphi \right)}{\sqrt{1-{{\lambda }^{2}}{{\sin }^{2}}\left( \displaystyle\frac{{\text{π}} }{180}\varphi \right)}} \right]\text{，}$ (5)
 $\begin{split} & \ \ \ \ \ \ \ \ {V}=\frac{{\text{π}} {{D}^{2}}}{4}\left[ \frac{S}{\varepsilon -1} \right.+\frac{S}{2}\left[ \left( 1+\frac{1}{\lambda } \right) \right.- \\ & \left. \left. \cos \left( \frac{{\text{π}}}{180}\varphi \right)-\frac{1}{\lambda }\sqrt{1-{{\lambda }^{2}}{{\sin }^{2}}\left( \frac{{\text{π}} }{180}\varphi \right)} \right] \right]\text{。} \end{split}$ (6)

2.2.2 气缸换热计算模型

 $\frac{{{\rm d}{Q_w}}}{{{\rm d}\varphi }} =\mathop \sum _{i =1}^3 \frac{{{\rm d}{Q_{wi}}}}{{{\rm d}\varphi }} =\mathop \sum _{i =1}^3 {\alpha _g} \cdot {A_i}\left( {T - {T_{wi}}} \right)\text{。}$ (7)

 ${\alpha _g} =\mu {D^{ - 0.214}}{\left( {p \cdot n \cdot s} \right)^{0.786}}{T^{ - 0.53}}\text{。}$ (8)

2.2.3 滞燃期计算模型

 ${\tau _{{\rm{ig}}}} =0.1 + 1.194 \times {10^{ - 4}}{p^{ - 0.87}}{e^{\frac{{1967}}{T}}}{C_{ig}}\text{。}$ (9)

2.2.4 缸内热力学参数计算模型

 $\begin{split} k =1.4373 - 1.318 \times {10^{ - 4}} \cdot T + .12 \times \\ {10^{ - 8}} \cdot {T^2} - 4.8 \times {10^{ - 2}}/{\alpha _\varphi }\text{，} \end{split}$ (10)
 ${\rm{R}} =9.81 \times \left( {29.2647 - 0.0402 / {\alpha _\varphi }} \right)\text{。}$ (11)

 ${c_v} =\frac{R}{{k - 1}}\text{，}$ (12)
 ${c_p} =\frac{{k \cdot R}}{{k - 1}}\text{，}$ (13)
 ${{h}} ={c_P} \cdot T\text{，}$ (14)

 $\begin{split} \frac{{{\rm d}T}}{{{\rm d}\varphi }} =&\frac{1}{{m{c_V}}}\left[ {{g_f}{H_u}\frac{{{\rm d}x}}{{{\rm d}\varphi }}} \right. - \frac{{{\rm d}{Q_w}}}{{{\rm d}\varphi }} - p\frac{{{\rm d}V}}{{{\rm d}\varphi }} + {h_s}\frac{{{\rm d}{m_s}}}{{{\rm d}\varphi }} - \\ &{h_e}\frac{{{\rm d}{m_e}}}{{{\rm d}\varphi }} - \left. {u\frac{{{\rm d}m}}{{{\rm d}\varphi }}} \right]\text{，} \end{split}$ (15)
 ${{pv}} ={{mRT}}\text{。}$ (16)
2.2.5 放热率计算模型

 $\begin{split} \frac{{d{\rm{x}}}}{{d\varphi }} =&\left( {m + 1} \right) \times 6.908{\left( {\frac{1}{{\varphi z}}} \right)^{{m_p} + 1}} \cdot (\varphi - {\varphi _B}{)^{{m_p}}} \times\\ & {e^{ - 6.908{{\left( {\frac{1}{{{\varphi _{{Z_p}}}}}} \right)}^{m + 1}} \cdot {{\left( {\varphi - {\varphi _B}} \right)}^{m + 1}}}}\text{。} \end{split}$ (17)

2.2.6 进排气阀模型

 $\frac{{{\rm d}{m_e}}}{{{\rm d}\phi }} =\frac{1}{{6n}}{\mu _e} \cdot {F_e}\frac{p}{{\sqrt {RT} }}{\left( {\frac{2}{{k + 1}}} \right)^{\frac{1}{{k - 1}}}} \cdot \sqrt {\frac{{2k}}{{k + 1}}} \text{。}$ (18)

2.2.7 指示扭矩计算模型

1）计算作用于活塞顶端的作用力P

 ${{{P}}_{g}}=\frac{{\text{π}}{{D}^{2}}}{4}\left( p-\overset{\acute{\ }}{\mathop{p}}\, \right)\text{。}$ (19)

2）计算连杆与活塞之间的往复惯性力

 ${{{P}}_{{j}}} = - \left( {{{{m}}_{{p}}} + {{{m}}_1}} \right){{*a}}\text{。}$ (20)

 ${{a}} =R{{\rm{\omega }}^2}\left( {\cos {\rm{\alpha }} + {\rm{\gamma }}\frac{{\cos 2{\rm{\alpha }}}}{{\cos {\rm{\beta }}}} + \frac{{{{\rm{\gamma }}^3}}}{4}\frac{{{\rm{si}}{{\rm{n}}^2}2{\rm{\alpha }}}}{{{\rm{co}}{{\rm{s}}^2}{\rm{\beta }}}}} \right)\text{。}$ (21)

3）计算扭矩：

 ${{{M}}_1} =\frac{{\sin \left( {{\rm{\alpha }} + {\rm{\beta }}} \right)}}{{{\rm{cos\beta }}}}\left( {{{{P}}_{{g}}} + {{{P}}_{{j}}}} \right){{*R}}\text{。}$ (22)
2.3 进排气系统建模

 图 5 进排气系统模型示意图 Fig. 5 Schematic diagram of intake and exhaust system model
2.3.1 进排气管建模

 ${{pv}} ={{mRT}}\text{，}$ (23)
 $\frac{{{\rm{d}}m}}{{{\rm{d\varphi }}}} =\mathop \sum _{{{i}} =1}^{{n}} \left( {\frac{{{\rm{d}}{{{m}}_{{i}}}}}{{{\rm{d\varphi }}}}} \right) + \frac{{{\rm{d}}{{{m}}_{{T}}}}}{{{\rm{d\varphi }}}}\text{，}$ (24)
 $\frac{{{\rm{d}}T}}{{{\rm{d\varphi }}}} =\frac{{\left(\mathop \sum \nolimits_{{{i}} =1}^{{n}} \left( {{{{h}}_{{i}}}\displaystyle\frac{{{\rm{d}}{{{m}}_{{i}}}}}{{{\rm{d\varphi }}}}} \right) + {{{h}}_{{T}}}\displaystyle\frac{{{\rm{d}}{{{m}}_{{T}}}}}{{{\rm{d\varphi }}}} + \displaystyle\frac{{{\rm{d}}{{{Q}}_{{w}}}}}{{{\rm{d\varphi }}}} - {{{c}}_{{v}}}{{T}}\displaystyle\frac{{{\rm{d}}{{{m}}_{{T}}}}}{{{\rm{d\varphi }}}}\right)}}{{{{\rm{c}}_{\rm{v}}}{\rm{m}}}}\text{。}$ (25)

2.3.2 增压器建模

 ${W_{Kad}} =\frac{k}{{k - 1}}{\rm{*R}}{T_0}\left( {{\text{π}}_k^{\frac{{k - 1}}{k}} - 1} \right)\frac{{{\rm d}m}}{{{\rm d}t}}\text{。}$ (26)

 ${T_K} = {\rm{}}{T_0} + {T_0}\left( {{\text{π}} _k^{\frac{{k - 1}}{k}} - 1} \right)\frac{1}{{{\eta _{kad}}*\tau }}\text{。}$ (27)

 ${M_T} = {\eta _T}\frac{{{\rm{d}}m}}{{{\rm{d}}t}}{\rm{*}}\frac{k}{{k - 1}}{\rm{*R}}{T_T}\left( {1 - {\text{π}} _k^{\frac{{k - 1}}{k}}} \right)\frac{{30}}{{3.14*{n_T}}}\text{。}$ (28)

 ${T_{0T}} = {\tau _T}{T_T}\left\{ {1 - {\eta _T}\left[ {1 - {{\left( {\frac{1}{{{{\text{π}} _T}}}} \right)}^{\frac{{k - 1}}{k}}}} \right]} \right\}{\rm{}}\text{。}$ (29)

2.4 动力传动系统建模

 ${\rm{d}}n/{\rm{d}}t = \frac{{{{{T}}_{{i}}} + {{{T}}_{{s}}} - {{{T}}_{{f}}} - {{{T}}_{{p}}}}}{{{{{J}}_{{e}}}}}\frac{{60}}{{2{\rm{{\text{π}} }}}}\text{。}$ (30)

2.5 虚拟控制器模型

3 模型仿真验证

3.1 模型功能验证

3.1.1 验证起动、停车控制功能

 图 6 起动停车功能验证结果图 Fig. 6 Result diagram of start and stop function verification

3.1.2 转速、轨压闭环功能验证

 图 7 转速闭环功能验证结果图 Fig. 7 Result diagram of speed closed loop function verification

 图 8 轨压闭环控制验证结果图 Fig. 8 Result diagram of rail pressure closed loop function verification

3.1.3 相继增压功能验证

 图 9 相继增压功能验证结果图 Fig. 9 Result diagram of sequential supercharging function verification

3.1.4 多次喷射功能验证

 图 10 多次喷射功能验证结果图 Fig. 10 Result diagram of multiple injections function verification

3.2 模型精度和实时性验证 3.2.1 模型精度验证

 图 11 试验与仿真数据偏差曲线图 Fig. 11 Deviation curve diagram of experiment and simulation data

3.2.2 模型实时性验证

4 结　语

 [1] 杜剑维. 基于dSPACE的相继增压柴油机硬件在环仿真[D]. 哈尔滨: 哈尔滨工程大学, 2007. [2] 蒋方毅. 基于模型的柴油机硬件在环仿真与控制研究[D]. 武汉: 华中科技大学, 2009. [3] 杨闻睿, 敖国强, 等. 高压共轨柴油机ECU硬件在环仿真系统软件设计[J]. 内燃机工程, 2009, 30(5): 41-45. DOI:10.3969/j.issn.1000-0925.2009.05.009 [4] 凌健, 刘希, 谢晖. 高压共轨柴油机ECU硬件在环实时仿真及测试平台的开发[C]//. 中国内燃机学会燃烧节能净化分会2009年学术年会. CSICE2009-091. [5] 齐鲲鹏, 隆武强, 冯立岩. 硬件在环仿真系统中柴油机工作过程建模研究[J]. 内燃机工程, 2007, 28(6): 49-52. DOI:10.3969/j.issn.1000-0925.2007.06.012 [6] DEEPA R, RYAN M S S. A case study in hardware-in-the-loop testing: development of an ecu for a hybrid electric vehicle[J]. SAE Technical Paper Series, 2004-01-0303(2004). [7] 岳继光, 董延超. 汽车发动机模型硬件在环仿真研究[J]. 系统仿真技术, 2008(4): 85-89. [8] 王文成. 高压共轨柴油机轨压控制策略的研究[D]. 北京: 中国舰船研究院. 2017