﻿ 船舶主机隔振对轴系适配性影响研究
 舰船科学技术  2019, Vol. 41 Issue (2): 80-84 PDF

1. 大连测控技术研究所，辽宁 大连 116013;
2. 中国舰船研究设计中心，湖北 武汉 430064;
3. 哈尔滨工程大学 动力与能源工程学院，黑龙江 哈尔滨 150001

Research on the impact of ship main engine vibration isolation to shafting suitability
ZHANG Zhi-peng1, LI Liao-yuan2, CAO Yipeng3
1. Dalian Scientific Test and Control Technology Institute, Dalian 116013, China;
2. China Ship Development and Design Center, Wuhan 430064, China;
3. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
Abstract: Marine shafting is a vital part of propulsion system. Ship normal running is directly influenced by its reliability and stability. A typical marine shafting test bench was investigated in this paper. A finite element model of the shafting was established based on FEM. Transient response analysis was carried out considering additional excitation caused by main engine vibration isolation under ship pitching. The computation results indicate that bearing loads are mainly affected by main engine vibration isolator's vertical stiffness. When in system design, the impact of vibration isolator's stiffness to shafting vibration and isolation effect should be considered synthetically.
Key words: shafting vibration     FEM     pitching     suitability
0 引　言

1 纵摇环境简化方法

 图 1 纵摇简化示意图 Fig. 1 Predigestion of pitching

 $\theta = \frac{{\text{π}} }{{12}} \times \sin \frac{{2{\text{π}} t}}{{10}}{\text{，}}$ (1)

$\omega = \displaystyle\frac{{2{\text{π}} }}{{10}}$ $A = \sin (\omega t)$ $B = \cos (\omega t)$ $C = \sin \theta$ $D = \cos \theta$ ，则

 \begin{align} {g_v} =& \left [g + \frac{{\text{π}}}{{12}}{\omega ^2}L \left(\frac{{\text{π}}}{{12}}{B^2}D - AC\right)\right]D +\\ & \left[\frac{\text{π} }{{12}}{\omega ^2}L \left( - \frac{{\text{π}}}{{12}}{B^2}C - AD\right)\right]C{\text{，}}\\ {g_A} =& \left[g + \frac{{\text{π}}}{{12}}{\omega ^2}L \left(\frac{{\text{π}} }{{12}}{B^2}D - AC\right)\right]C -\\ & \left[\frac{\text{π} }{{12}}{\omega ^2}L\left( - \frac{{\text{π}} }{{12}}{B^2}C - AD\right)\right]D{\text{，}}\\ & \overrightarrow g = ({g_V},0,{g_A}){\text{。}} \end{align} (2)

2 轴系动力学模型 2.1 模型建立

 图 2 轴系台架模型 Fig. 2 Model of shafting test bench
2.2 模型验证

 图 3 轴系模态振型试验与仿真的比较 Fig. 3 Comparison of shafting modes by tests and computation

3 计算分析 3.1 载荷输入

 图 4 纵摇环境等效重力加速度 Fig. 4 Equivalent gravity of pitching

 图 5 弹性联轴器激励力 Fig. 5 Excitation forces at coupling

3.2 隔振刚度对轴承负荷的影响

1）分析不同方向的刚度变化对轴系适配性的影响

 图 6 各轴承的负荷 Fig. 6 Bearing loads of each bearing

2）分析不同大小的刚度变化对轴系适配性的影响

 图 7 各轴承的负荷 Fig. 7 Bearing loads of each bearing

3.3 适配性规律

4 结　语

 [1] 陈之炎. 船舶推进轴系振动[M]. 上海: 上海交通大学出版社, 1987. [2] 徐伟, 李桐桥. 推进电机新型隔振装置设计研究[J]. 舰船科学技术, 2006, 28(2): 86-88. XU W, LI T Q. Design study of a new mounting system for marine propulsion electrical machine[J]. Ship Science and Technology, 2006, 28(2): 86-88. [3] 郭全丽, 祝长生, 邓轶. 主机隔振器刚度对船舶推进轴系冲击特性的影响[J]. 中国舰船研究, 2008, 3(3): 38-41. GUO Q L, ZHU C S, DENG Y. Effects of the stiffness of vibration isolators on anti-shock dynamics for propulsion shafting of ship[J]. Chinese Journal of Ship Research, 2008, 3(3): 38-41. DOI:10.3969/j.issn.1673-3185.2008.03.009 [4] 王永远.船舶动力系统隔振技术研究[D]. 武汉: 武汉理工大学, 2008. [5] 张亚洲.船舶推进装置-气囊隔振系统校中特性研究[D]. 西安: 西安科技大学, 2013. [6] 卜文俊, 何琳, 施亮. 船舶推进装置气囊隔振系统对中可控性问题研究[J]. 振动与冲击, 2015, 34(5): 56-60. BU W J, HE L, SHI L. Alignment controllability of air spring vibration isolation system of a ship propulsion plant[J]. Journal of Vibration and Shock, 2015, 34(5): 56-60. [7] ARVID Naess. A second-order theory for the response statistics of wave induced ship hull vibrations in random seas[J]. Maritime Structures, 1996, 9: 389-408. DOI:10.1016/0951-8339(95)00029-1 [8] J. JUNCHER JENSEN. Wave-induced ship hull vibrations in stochastic seaways[J]. Maritime Structures, 1996, 9: 353-387. DOI:10.1016/0951-8339(95)00031-3 [9] ALOK K. Jha. Nonlinear stochastic models for ocean wave load and responses of offshore structures and vessels[D]. USA:Stanford University, 1997. [10] 刘树鹏.舰船纵横倾作用下转子轴承系统动力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.