﻿ 低速风洞测试干扰数值分析
 舰船科学技术  2019, Vol. 41 Issue (2): 61-64 PDF

1. 武汉第二船舶设计研究所，湖北 武汉 430064;
2. 华中科技大学，湖北 武汉 430074

Interference effects by numerical analysis in low-speed wind tunnel test
CHEN Xiao-zou1, WAN Yu-xiang2
1. Wuhan Second Ship Design and Research Institute,Wuhan 430064,China;
2. Huazhong University of Science and Technology, Wuhan 430074, China
Abstract: The wind tunnel wall and the mounting frame are two main interference effects in the low speed wind tunnel test. The influence of the wall interference and the support interference on the resistance test results are verified through numerical simulation by using Suboff model. Meanwhile, the reliability of the classic image method for low-speed wind tunnel tests was verified. Wind tunnel test numerical simulation results have been effectively corrected by the method.
Key words: wave buoy     wave parameter     portability     wave following characteristic
0 引　言

1 理论基础 1.1 控制方程

 $\frac{{\partial {{\bar u}_i}}}{{\partial {x_i}}} = 0{\text{，}}$ (1)
 $\frac{{\partial {{\bar u}_i}}}{{\partial t}} + \frac{{\partial {{\bar u}_i}{{\bar u}_j}}}{{\partial {x_j}}} = {F_i} - \frac{1}{\rho }\frac{{\partial \bar p}}{{\partial {x_i}}} + \nu \frac{{{\partial ^2}{{\bar u}_i}}}{{\partial {x_j}\partial {x_j}}} - \frac{{\partial \overline {u_i'u_j'} }}{{\partial {x_j}}}{\text{。}}$ (2)

 $\frac{\partial }{{\partial t}}\left( {\rho k} \right) + \frac{\partial }{{\partial {x_i}}}\left( {\rho k{u_i}} \right) = \frac{\partial }{{\partial {x_j}}}\left( {{\varGamma _k}\frac{{\partial k}}{{\partial {x_j}}}} \right) + {G_k} - {Y_k} + {S_k}{\text{，}}$ (3)
 $\frac{\partial }{{\partial t}}\left( {\rho \omega } \right) + \frac{\partial }{{\partial {x_i}}}\left( {\rho \omega {u_i}} \right) = \frac{\partial }{{\partial {x_j}}}\left( {{{\varGamma }_\omega }\frac{{\partial \omega }}{{\partial {x_j}}}} \right) + {G_\omega } - {Y_\omega } + {S_\omega }{\text{。}}$ (4)
1.2 数值方法

1.3 边界条件

2 研究对象及其干扰分析方法 2.1 研究对象

 图 1 Suboff模型及安装示意图 Fig. 1 Suboff model and installation

2.2 洞壁干扰处理方法

 ${C_{{D_c}}} = {C_{{D_u}}}\left( {1 - 2\varepsilon } \right) + \Delta {C_D} + \Delta {C_{DW}}{\text{，}}$ (5)

 ${\rm{\varepsilon }} = {\varepsilon _S} + {\varepsilon _W} {\text{，}}$ (6)

 ${{\varepsilon }_{S}}=K\tau \frac{V}{{{A}^{{}^{3}\!\!\diagup\!\!{}_{2}\;}}}{\text{。}}$ (7)

${\varepsilon _W}$ 为模型尾流阻塞干扰因子，三维试验之下的计算公式为：

 ${\varepsilon _W} = \frac{S}{{4A}}{C_{D{0_u}}}{\text{，}}$ (8)

$\Delta {C_{DW}}$ 的计算公式为：

 $\Delta {C_{DW}} = - {\varepsilon _S} \cdot {C_{D{0_u}}}{\text{，}}$ (9)

2.3 安装支架干扰处理方法

3 计算结果及其分析 3.1 洞壁干扰

3.2 安装支架干扰

4 结　语

1）通过数值方法对风洞测试过程中2个主要干扰因素进行修正，修正结果表明对于洞壁干扰效应，从阻力测定的角度来说，只要洞壁与模型的相对尺寸选择合理，洞壁干扰对于测定结果的影响比较有限，而其影响均可以通过适当的手段进行修正。

2）对于支架干扰效应，从阻力测定的角度来说，即使支架的截面选择为对阻力系数影响相对较小的流线型，支架系统的存在对测定结果中阻力系数的影响仍然非常大。镜像两步法的修正效果对于本文的研究对象来说具有很高的可靠性。

 [1] 王勋年等. 《低速风洞试验》第1版. 北京: 国防工业出版社 2002: 1–2. [2] 程厚梅等. 《风洞实验干扰与修正》第1版. 北京: 国防工业出版社 2003: 4–5. [3] UNCERTAINTY E, APPLICATION W, TESTING W T. Standard: assessment of experimental uncertainty with application to wind tunnel testing (AIAA S-071A-1999)[M]. 1999. [4] MEYN L. A new method for integrating uncertainty analysis into data reduction software[C]//Aiaa Aerospace Sciences Meeting and Exhibit. 2013. [5] 全国认证认可标准化技术委员会. GB/T27025-2008检测和校准实验室能力的通用要求理解与实施[M]. 中国标准出版社, 2009: 94. [6] SIMONSEN C D, STERN F. Verification and validation of RANS maneuvering simulation of Esso Osaka: effects of drift and rudder angle on forces and moments[J]. Computers & Fluids, 2003, 32(10): 1325-1356. [7] KIM J, PARK I R, VAN S H, et al. Calculation of Turbulent Flows around a Submarine for the Prediction of Hydrodynamic Performance[J]. Journal of Ship & Ocean Technology, 2003, 7(4). [8] 朱德祥, 张志荣, 吴乘胜, 等. 船舶CFD不确定度分析及ITTC临时规程的初步应用[J]. 水动力学研究与进展, 2007, 22(3): 363-370. DOI:10.3969/j.issn.1000-4874.2007.03.015 [9] 张楠, 沈泓萃, 姚惠之. 阻力和流场的CFD不确定度分析探讨[J]. 船舶力学, 2008, 12(2): 211-224. DOI:10.3969/j.issn.1007-7294.2008.02.007